Automatic Extraction System for Common Artifacts in EEG Signals Based on Evolutionary Stone’s BSS Algorithm

An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2014-01, Vol.2014 (1)
Hauptverfasser: Abdullah, Ahmed Kareem, Zhang, Chao Zhu, Abdullah, Ali Abdul Abbas, Lian, Siyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An automatic artifact extraction system is proposed based on a hybridization of Stone’s BSS and genetic algorithm. This hybridization is called evolutionary Stone’s BSS algorithm (ESBSS). Original Stone’s BSS used short- and long-term half-life parameters as constant values, and the changes in these parameters will be affecting directly the separated signals; also there is no way to determine the best parameters. The genetic algorithm is a suitable technique to overcome this problem by finding randomly the optimum half-life parameters in Stone’s BSS. The proposed system is used to extract automatically the common artifacts such as ocular and heart beat artifacts from EEG mixtures without prejudice to the data; also there is no notch filter used in the proposed system in order not to lose any useful information.
ISSN:1024-123X
1563-5147
DOI:10.1155/2014/324750