A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS

This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2014-01, Vol.52 (5), p.2415-2439
Hauptverfasser: DETEIX, J., JENDOUBI, A., YAKOUBI, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2439
container_issue 5
container_start_page 2415
container_title SIAM journal on numerical analysis
container_volume 52
creator DETEIX, J.
JENDOUBI, A.
YAKOUBI, D.
description This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.
doi_str_mv 10.1137/130942516
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629370155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512200</jstor_id><sourcerecordid>24512200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</originalsourceid><addsrcrecordid>eNo9kMFOg0AQQDdGE2v14AeY7FEP6M4uu8CRwNISEWqBHiUUd5M2rbRse_DmP_iHfonUmp4mM3lvDg-hWyCPAMx5AkY8m3IQZ2gAxOOWAw45RwNCmLDApt4lujJmSfrdBTZAbz4OsnKSyBBPpjKMgyLOUpwHY_kicZRNcZ4lszgd4WIscerPYjn9-frOi-xZ5thPw95OZ_LPssI4isr84MvX0j-c8mt0oeuVUTf_c4jKSBbB2EqyURz4idVQ195ZLhBXCcUFqUFxW8ydpoG64aTWLnAxbxjMXe1xpil1NbGpeHeorjXhzBaaARui--PfTddu98rsqvXCNGq1qj9UuzcVCOoxhwDnPfpwRJuuNaZTutp0i3XdfVZAqkPD6tSwZ--O7NLs2u4EUpsDpX3CXzA1ZJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629370155</pqid></control><display><type>article</type><title>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>DETEIX, J. ; JENDOUBI, A. ; YAKOUBI, D.</creator><creatorcontrib>DETEIX, J. ; JENDOUBI, A. ; YAKOUBI, D.</creatorcontrib><description>This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/130942516</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Conductivity ; Convection ; Convection diffusion equation ; Convergence ; Finite element method ; Fluid flow ; Free convection ; Heat transfer ; Joining ; Mathematical analysis ; Mathematical models ; Navier Stokes equation ; Projection ; Rayleigh number ; Viscosity</subject><ispartof>SIAM journal on numerical analysis, 2014-01, Vol.52 (5), p.2415-2439</ispartof><rights>Copyright ©2014 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</citedby><cites>FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512200$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512200$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,3173,27907,27908,58000,58004,58233,58237</link.rule.ids></links><search><creatorcontrib>DETEIX, J.</creatorcontrib><creatorcontrib>JENDOUBI, A.</creatorcontrib><creatorcontrib>YAKOUBI, D.</creatorcontrib><title>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</title><title>SIAM journal on numerical analysis</title><description>This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Conductivity</subject><subject>Convection</subject><subject>Convection diffusion equation</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier Stokes equation</subject><subject>Projection</subject><subject>Rayleigh number</subject><subject>Viscosity</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOg0AQQDdGE2v14AeY7FEP6M4uu8CRwNISEWqBHiUUd5M2rbRse_DmP_iHfonUmp4mM3lvDg-hWyCPAMx5AkY8m3IQZ2gAxOOWAw45RwNCmLDApt4lujJmSfrdBTZAbz4OsnKSyBBPpjKMgyLOUpwHY_kicZRNcZ4lszgd4WIscerPYjn9-frOi-xZ5thPw95OZ_LPssI4isr84MvX0j-c8mt0oeuVUTf_c4jKSBbB2EqyURz4idVQ195ZLhBXCcUFqUFxW8ydpoG64aTWLnAxbxjMXe1xpil1NbGpeHeorjXhzBaaARui--PfTddu98rsqvXCNGq1qj9UuzcVCOoxhwDnPfpwRJuuNaZTutp0i3XdfVZAqkPD6tSwZ--O7NLs2u4EUpsDpX3CXzA1ZJs</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>DETEIX, J.</creator><creator>JENDOUBI, A.</creator><creator>YAKOUBI, D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</title><author>DETEIX, J. ; JENDOUBI, A. ; YAKOUBI, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Conductivity</topic><topic>Convection</topic><topic>Convection diffusion equation</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier Stokes equation</topic><topic>Projection</topic><topic>Rayleigh number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DETEIX, J.</creatorcontrib><creatorcontrib>JENDOUBI, A.</creatorcontrib><creatorcontrib>YAKOUBI, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DETEIX, J.</au><au>JENDOUBI, A.</au><au>YAKOUBI, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>52</volume><issue>5</issue><spage>2415</spage><epage>2439</epage><pages>2415-2439</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130942516</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2014-01, Vol.52 (5), p.2415-2439
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1629370155
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Algorithms
Approximation
Conductivity
Convection
Convection diffusion equation
Convergence
Finite element method
Fluid flow
Free convection
Heat transfer
Joining
Mathematical analysis
Mathematical models
Navier Stokes equation
Projection
Rayleigh number
Viscosity
title A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COUPLED%20PREDICTION%20SCHEME%20FOR%20SOLVING%20THE%20NAVIER%E2%80%93STOKES%20AND%20CONVECTION-DIFFUSION%20EQUATIONS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=DETEIX,%20J.&rft.date=2014-01-01&rft.volume=52&rft.issue=5&rft.spage=2415&rft.epage=2439&rft.pages=2415-2439&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/130942516&rft_dat=%3Cjstor_proqu%3E24512200%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629370155&rft_id=info:pmid/&rft_jstor_id=24512200&rfr_iscdi=true