A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS
This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2014-01, Vol.52 (5), p.2415-2439 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2439 |
---|---|
container_issue | 5 |
container_start_page | 2415 |
container_title | SIAM journal on numerical analysis |
container_volume | 52 |
creator | DETEIX, J. JENDOUBI, A. YAKOUBI, D. |
description | This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches. |
doi_str_mv | 10.1137/130942516 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629370155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512200</jstor_id><sourcerecordid>24512200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</originalsourceid><addsrcrecordid>eNo9kMFOg0AQQDdGE2v14AeY7FEP6M4uu8CRwNISEWqBHiUUd5M2rbRse_DmP_iHfonUmp4mM3lvDg-hWyCPAMx5AkY8m3IQZ2gAxOOWAw45RwNCmLDApt4lujJmSfrdBTZAbz4OsnKSyBBPpjKMgyLOUpwHY_kicZRNcZ4lszgd4WIscerPYjn9-frOi-xZ5thPw95OZ_LPssI4isr84MvX0j-c8mt0oeuVUTf_c4jKSBbB2EqyURz4idVQ195ZLhBXCcUFqUFxW8ydpoG64aTWLnAxbxjMXe1xpil1NbGpeHeorjXhzBaaARui--PfTddu98rsqvXCNGq1qj9UuzcVCOoxhwDnPfpwRJuuNaZTutp0i3XdfVZAqkPD6tSwZ--O7NLs2u4EUpsDpX3CXzA1ZJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629370155</pqid></control><display><type>article</type><title>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>DETEIX, J. ; JENDOUBI, A. ; YAKOUBI, D.</creator><creatorcontrib>DETEIX, J. ; JENDOUBI, A. ; YAKOUBI, D.</creatorcontrib><description>This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/130942516</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Conductivity ; Convection ; Convection diffusion equation ; Convergence ; Finite element method ; Fluid flow ; Free convection ; Heat transfer ; Joining ; Mathematical analysis ; Mathematical models ; Navier Stokes equation ; Projection ; Rayleigh number ; Viscosity</subject><ispartof>SIAM journal on numerical analysis, 2014-01, Vol.52 (5), p.2415-2439</ispartof><rights>Copyright ©2014 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</citedby><cites>FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512200$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512200$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,3173,27907,27908,58000,58004,58233,58237</link.rule.ids></links><search><creatorcontrib>DETEIX, J.</creatorcontrib><creatorcontrib>JENDOUBI, A.</creatorcontrib><creatorcontrib>YAKOUBI, D.</creatorcontrib><title>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</title><title>SIAM journal on numerical analysis</title><description>This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Conductivity</subject><subject>Convection</subject><subject>Convection diffusion equation</subject><subject>Convergence</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Heat transfer</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier Stokes equation</subject><subject>Projection</subject><subject>Rayleigh number</subject><subject>Viscosity</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOg0AQQDdGE2v14AeY7FEP6M4uu8CRwNISEWqBHiUUd5M2rbRse_DmP_iHfonUmp4mM3lvDg-hWyCPAMx5AkY8m3IQZ2gAxOOWAw45RwNCmLDApt4lujJmSfrdBTZAbz4OsnKSyBBPpjKMgyLOUpwHY_kicZRNcZ4lszgd4WIscerPYjn9-frOi-xZ5thPw95OZ_LPssI4isr84MvX0j-c8mt0oeuVUTf_c4jKSBbB2EqyURz4idVQ195ZLhBXCcUFqUFxW8ydpoG64aTWLnAxbxjMXe1xpil1NbGpeHeorjXhzBaaARui--PfTddu98rsqvXCNGq1qj9UuzcVCOoxhwDnPfpwRJuuNaZTutp0i3XdfVZAqkPD6tSwZ--O7NLs2u4EUpsDpX3CXzA1ZJs</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>DETEIX, J.</creator><creator>JENDOUBI, A.</creator><creator>YAKOUBI, D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</title><author>DETEIX, J. ; JENDOUBI, A. ; YAKOUBI, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-8108e6e560a1e546b7cc1ac50af8156bc31b8f953f228f0426d72faf05346f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Conductivity</topic><topic>Convection</topic><topic>Convection diffusion equation</topic><topic>Convergence</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Heat transfer</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier Stokes equation</topic><topic>Projection</topic><topic>Rayleigh number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DETEIX, J.</creatorcontrib><creatorcontrib>JENDOUBI, A.</creatorcontrib><creatorcontrib>YAKOUBI, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DETEIX, J.</au><au>JENDOUBI, A.</au><au>YAKOUBI, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>52</volume><issue>5</issue><spage>2415</spage><epage>2439</epage><pages>2415-2439</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This paper presents a new algorithm for the numerical solution of the Navier–Stokes equations coupled with the convection-diffusion equation. After establishing convergence of the semi-discrete formulation at each time step, we introduce a new iterative scheme based on a projection method called the coupled prediction scheme. We show that even though the predicted temperature is advected by a velocity prediction which is not necessarily divergence free, the theoretical time accuracy of the global scheme is conserved. From a numerical point of view, this new approach gives a faster and more efficient algorithm compared to the usual fixed-point approaches.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130942516</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2014-01, Vol.52 (5), p.2415-2439 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629370155 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Algorithms Approximation Conductivity Convection Convection diffusion equation Convergence Finite element method Fluid flow Free convection Heat transfer Joining Mathematical analysis Mathematical models Navier Stokes equation Projection Rayleigh number Viscosity |
title | A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER–STOKES AND CONVECTION-DIFFUSION EQUATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COUPLED%20PREDICTION%20SCHEME%20FOR%20SOLVING%20THE%20NAVIER%E2%80%93STOKES%20AND%20CONVECTION-DIFFUSION%20EQUATIONS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=DETEIX,%20J.&rft.date=2014-01-01&rft.volume=52&rft.issue=5&rft.spage=2415&rft.epage=2439&rft.pages=2415-2439&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/130942516&rft_dat=%3Cjstor_proqu%3E24512200%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629370155&rft_id=info:pmid/&rft_jstor_id=24512200&rfr_iscdi=true |