Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation

In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET microwaves, antennas & propagation antennas & propagation, 2014-09, Vol.8 (12), p.965-972
Hauptverfasser: Wei, Xiao-Kun, Shao, Wei, Zhang, Cheng, Li, Jia-Lin, Wang, Bing-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 12
container_start_page 965
container_title IET microwaves, antennas & propagation
container_volume 8
creator Wei, Xiao-Kun
Shao, Wei
Zhang, Cheng
Li, Jia-Lin
Wang, Bing-Zhong
description In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.
doi_str_mv 10.1049/iet-map.2014.0034
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629369349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3457933121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhRujiYg-gLsmbnRRnL8yjDskoCQQXeDSTIbpLZS0nTLTSnh7h9SoMUY3d2bxnXvOPUFwiVEPIyZuM6ijQlU9gjDrIUTZUdDBPMbRgFN6_Pkn8Wlw5twGoTiOKe8Er9OisuYNktBBnkYqUVWdvUG4ghLqTIcqXxmb1esi3PkZbhtV1k0ROr2GAsLU2BBy0LU1hVq1CuMXFJlTdWbK8-AkVbmDi4-3G7xMxovRYzR7epiOhrNIMyJ4JCjVzOdMBE5SRlMBfsISmMCKa8ViQfqcERrrBJYCczEgmoLoLzUWXKOUdoPrdq-_ZduAq6VPoCHPVQmmcRL3iaB9QZnw6NUPdGMaW_p0nsKIiJhw5incUtoa5yyksrJZoexeYiQPhUtfuPSFy0Ph8lC419y1ml2Ww_5_gZxPh-R-grwn9-KoFR-wr0R_mN38wk_HCzkfPn_zqJKUvgP4L6RL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610295274</pqid></control><display><type>article</type><title>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</title><source>Wiley-Blackwell Open Access Titles</source><creator>Wei, Xiao-Kun ; Shao, Wei ; Zhang, Cheng ; Li, Jia-Lin ; Wang, Bing-Zhong</creator><creatorcontrib>Wei, Xiao-Kun ; Shao, Wei ; Zhang, Cheng ; Li, Jia-Lin ; Wang, Bing-Zhong</creatorcontrib><description>In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.</description><identifier>ISSN: 1751-8725</identifier><identifier>ISSN: 1751-8733</identifier><identifier>EISSN: 1751-8733</identifier><identifier>DOI: 10.1049/iet-map.2014.0034</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Algorithms ; crossover operation ; crossover probability ; Crossovers ; electromagnetic optimisation problem ; electromagnetic wave propagation ; finite difference time‐domain analysis ; finite difference time‐domain method ; finite element analysis ; flnite element method ; frequency selective surfaces ; Genetic algorithms ; HFSS ; improved SA scheme ; Iterative methods ; Mathematical analysis ; Mathematical models ; mutation rate ; Optimization ; probability ; QGA ; quantum genetic algorithm ; Searching ; self‐adaptive genetic algorithm</subject><ispartof>IET microwaves, antennas &amp; propagation, 2014-09, Vol.8 (12), p.965-972</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</citedby><cites>FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-map.2014.0034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-map.2014.0034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-map.2014.0034$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Wei, Xiao-Kun</creatorcontrib><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Jia-Lin</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><title>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</title><title>IET microwaves, antennas &amp; propagation</title><description>In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.</description><subject>Algorithms</subject><subject>crossover operation</subject><subject>crossover probability</subject><subject>Crossovers</subject><subject>electromagnetic optimisation problem</subject><subject>electromagnetic wave propagation</subject><subject>finite difference time‐domain analysis</subject><subject>finite difference time‐domain method</subject><subject>finite element analysis</subject><subject>flnite element method</subject><subject>frequency selective surfaces</subject><subject>Genetic algorithms</subject><subject>HFSS</subject><subject>improved SA scheme</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mutation rate</subject><subject>Optimization</subject><subject>probability</subject><subject>QGA</subject><subject>quantum genetic algorithm</subject><subject>Searching</subject><subject>self‐adaptive genetic algorithm</subject><issn>1751-8725</issn><issn>1751-8733</issn><issn>1751-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1OwkAUhRujiYg-gLsmbnRRnL8yjDskoCQQXeDSTIbpLZS0nTLTSnh7h9SoMUY3d2bxnXvOPUFwiVEPIyZuM6ijQlU9gjDrIUTZUdDBPMbRgFN6_Pkn8Wlw5twGoTiOKe8Er9OisuYNktBBnkYqUVWdvUG4ghLqTIcqXxmb1esi3PkZbhtV1k0ROr2GAsLU2BBy0LU1hVq1CuMXFJlTdWbK8-AkVbmDi4-3G7xMxovRYzR7epiOhrNIMyJ4JCjVzOdMBE5SRlMBfsISmMCKa8ViQfqcERrrBJYCczEgmoLoLzUWXKOUdoPrdq-_ZduAq6VPoCHPVQmmcRL3iaB9QZnw6NUPdGMaW_p0nsKIiJhw5incUtoa5yyksrJZoexeYiQPhUtfuPSFy0Ph8lC419y1ml2Ww_5_gZxPh-R-grwn9-KoFR-wr0R_mN38wk_HCzkfPn_zqJKUvgP4L6RL</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Wei, Xiao-Kun</creator><creator>Shao, Wei</creator><creator>Zhang, Cheng</creator><creator>Li, Jia-Lin</creator><creator>Wang, Bing-Zhong</creator><general>The Institution of Engineering and Technology</general><general>The Institution of Engineering &amp; Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201409</creationdate><title>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</title><author>Wei, Xiao-Kun ; Shao, Wei ; Zhang, Cheng ; Li, Jia-Lin ; Wang, Bing-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>crossover operation</topic><topic>crossover probability</topic><topic>Crossovers</topic><topic>electromagnetic optimisation problem</topic><topic>electromagnetic wave propagation</topic><topic>finite difference time‐domain analysis</topic><topic>finite difference time‐domain method</topic><topic>finite element analysis</topic><topic>flnite element method</topic><topic>frequency selective surfaces</topic><topic>Genetic algorithms</topic><topic>HFSS</topic><topic>improved SA scheme</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mutation rate</topic><topic>Optimization</topic><topic>probability</topic><topic>QGA</topic><topic>quantum genetic algorithm</topic><topic>Searching</topic><topic>self‐adaptive genetic algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiao-Kun</creatorcontrib><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Jia-Lin</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET microwaves, antennas &amp; propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Xiao-Kun</au><au>Shao, Wei</au><au>Zhang, Cheng</au><au>Li, Jia-Lin</au><au>Wang, Bing-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</atitle><jtitle>IET microwaves, antennas &amp; propagation</jtitle><date>2014-09</date><risdate>2014</risdate><volume>8</volume><issue>12</issue><spage>965</spage><epage>972</epage><pages>965-972</pages><issn>1751-8725</issn><issn>1751-8733</issn><eissn>1751-8733</eissn><abstract>In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-map.2014.0034</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8725
ispartof IET microwaves, antennas & propagation, 2014-09, Vol.8 (12), p.965-972
issn 1751-8725
1751-8733
1751-8733
language eng
recordid cdi_proquest_miscellaneous_1629369349
source Wiley-Blackwell Open Access Titles
subjects Algorithms
crossover operation
crossover probability
Crossovers
electromagnetic optimisation problem
electromagnetic wave propagation
finite difference time‐domain analysis
finite difference time‐domain method
finite element analysis
flnite element method
frequency selective surfaces
Genetic algorithms
HFSS
improved SA scheme
Iterative methods
Mathematical analysis
Mathematical models
mutation rate
Optimization
probability
QGA
quantum genetic algorithm
Searching
self‐adaptive genetic algorithm
title Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20self-adaptive%20genetic%20algorithm%20with%20quantum%20scheme%20for%20electromagnetic%20optimisation&rft.jtitle=IET%20microwaves,%20antennas%20&%20propagation&rft.au=Wei,%20Xiao-Kun&rft.date=2014-09&rft.volume=8&rft.issue=12&rft.spage=965&rft.epage=972&rft.pages=965-972&rft.issn=1751-8725&rft.eissn=1751-8733&rft_id=info:doi/10.1049/iet-map.2014.0034&rft_dat=%3Cproquest_24P%3E3457933121%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610295274&rft_id=info:pmid/&rfr_iscdi=true