Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation
In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the con...
Gespeichert in:
Veröffentlicht in: | IET microwaves, antennas & propagation antennas & propagation, 2014-09, Vol.8 (12), p.965-972 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 972 |
---|---|
container_issue | 12 |
container_start_page | 965 |
container_title | IET microwaves, antennas & propagation |
container_volume | 8 |
creator | Wei, Xiao-Kun Shao, Wei Zhang, Cheng Li, Jia-Lin Wang, Bing-Zhong |
description | In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified. |
doi_str_mv | 10.1049/iet-map.2014.0034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629369349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3457933121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhRujiYg-gLsmbnRRnL8yjDskoCQQXeDSTIbpLZS0nTLTSnh7h9SoMUY3d2bxnXvOPUFwiVEPIyZuM6ijQlU9gjDrIUTZUdDBPMbRgFN6_Pkn8Wlw5twGoTiOKe8Er9OisuYNktBBnkYqUVWdvUG4ghLqTIcqXxmb1esi3PkZbhtV1k0ROr2GAsLU2BBy0LU1hVq1CuMXFJlTdWbK8-AkVbmDi4-3G7xMxovRYzR7epiOhrNIMyJ4JCjVzOdMBE5SRlMBfsISmMCKa8ViQfqcERrrBJYCczEgmoLoLzUWXKOUdoPrdq-_ZduAq6VPoCHPVQmmcRL3iaB9QZnw6NUPdGMaW_p0nsKIiJhw5incUtoa5yyksrJZoexeYiQPhUtfuPSFy0Ph8lC419y1ml2Ww_5_gZxPh-R-grwn9-KoFR-wr0R_mN38wk_HCzkfPn_zqJKUvgP4L6RL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610295274</pqid></control><display><type>article</type><title>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</title><source>Wiley-Blackwell Open Access Titles</source><creator>Wei, Xiao-Kun ; Shao, Wei ; Zhang, Cheng ; Li, Jia-Lin ; Wang, Bing-Zhong</creator><creatorcontrib>Wei, Xiao-Kun ; Shao, Wei ; Zhang, Cheng ; Li, Jia-Lin ; Wang, Bing-Zhong</creatorcontrib><description>In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.</description><identifier>ISSN: 1751-8725</identifier><identifier>ISSN: 1751-8733</identifier><identifier>EISSN: 1751-8733</identifier><identifier>DOI: 10.1049/iet-map.2014.0034</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Algorithms ; crossover operation ; crossover probability ; Crossovers ; electromagnetic optimisation problem ; electromagnetic wave propagation ; finite difference time‐domain analysis ; finite difference time‐domain method ; finite element analysis ; flnite element method ; frequency selective surfaces ; Genetic algorithms ; HFSS ; improved SA scheme ; Iterative methods ; Mathematical analysis ; Mathematical models ; mutation rate ; Optimization ; probability ; QGA ; quantum genetic algorithm ; Searching ; self‐adaptive genetic algorithm</subject><ispartof>IET microwaves, antennas & propagation, 2014-09, Vol.8 (12), p.965-972</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering & Technology Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</citedby><cites>FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-map.2014.0034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-map.2014.0034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-map.2014.0034$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Wei, Xiao-Kun</creatorcontrib><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Jia-Lin</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><title>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</title><title>IET microwaves, antennas & propagation</title><description>In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.</description><subject>Algorithms</subject><subject>crossover operation</subject><subject>crossover probability</subject><subject>Crossovers</subject><subject>electromagnetic optimisation problem</subject><subject>electromagnetic wave propagation</subject><subject>finite difference time‐domain analysis</subject><subject>finite difference time‐domain method</subject><subject>finite element analysis</subject><subject>flnite element method</subject><subject>frequency selective surfaces</subject><subject>Genetic algorithms</subject><subject>HFSS</subject><subject>improved SA scheme</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mutation rate</subject><subject>Optimization</subject><subject>probability</subject><subject>QGA</subject><subject>quantum genetic algorithm</subject><subject>Searching</subject><subject>self‐adaptive genetic algorithm</subject><issn>1751-8725</issn><issn>1751-8733</issn><issn>1751-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1OwkAUhRujiYg-gLsmbnRRnL8yjDskoCQQXeDSTIbpLZS0nTLTSnh7h9SoMUY3d2bxnXvOPUFwiVEPIyZuM6ijQlU9gjDrIUTZUdDBPMbRgFN6_Pkn8Wlw5twGoTiOKe8Er9OisuYNktBBnkYqUVWdvUG4ghLqTIcqXxmb1esi3PkZbhtV1k0ROr2GAsLU2BBy0LU1hVq1CuMXFJlTdWbK8-AkVbmDi4-3G7xMxovRYzR7epiOhrNIMyJ4JCjVzOdMBE5SRlMBfsISmMCKa8ViQfqcERrrBJYCczEgmoLoLzUWXKOUdoPrdq-_ZduAq6VPoCHPVQmmcRL3iaB9QZnw6NUPdGMaW_p0nsKIiJhw5incUtoa5yyksrJZoexeYiQPhUtfuPSFy0Ph8lC419y1ml2Ww_5_gZxPh-R-grwn9-KoFR-wr0R_mN38wk_HCzkfPn_zqJKUvgP4L6RL</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Wei, Xiao-Kun</creator><creator>Shao, Wei</creator><creator>Zhang, Cheng</creator><creator>Li, Jia-Lin</creator><creator>Wang, Bing-Zhong</creator><general>The Institution of Engineering and Technology</general><general>The Institution of Engineering & Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201409</creationdate><title>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</title><author>Wei, Xiao-Kun ; Shao, Wei ; Zhang, Cheng ; Li, Jia-Lin ; Wang, Bing-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4297-933c4733d91df43f9ef43ebe491a7ca4592674235cdeb917982c3e96bc197c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>crossover operation</topic><topic>crossover probability</topic><topic>Crossovers</topic><topic>electromagnetic optimisation problem</topic><topic>electromagnetic wave propagation</topic><topic>finite difference time‐domain analysis</topic><topic>finite difference time‐domain method</topic><topic>finite element analysis</topic><topic>flnite element method</topic><topic>frequency selective surfaces</topic><topic>Genetic algorithms</topic><topic>HFSS</topic><topic>improved SA scheme</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mutation rate</topic><topic>Optimization</topic><topic>probability</topic><topic>QGA</topic><topic>quantum genetic algorithm</topic><topic>Searching</topic><topic>self‐adaptive genetic algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiao-Kun</creatorcontrib><creatorcontrib>Shao, Wei</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Jia-Lin</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET microwaves, antennas & propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Xiao-Kun</au><au>Shao, Wei</au><au>Zhang, Cheng</au><au>Li, Jia-Lin</au><au>Wang, Bing-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation</atitle><jtitle>IET microwaves, antennas & propagation</jtitle><date>2014-09</date><risdate>2014</risdate><volume>8</volume><issue>12</issue><spage>965</spage><epage>972</epage><pages>965-972</pages><issn>1751-8725</issn><issn>1751-8733</issn><eissn>1751-8733</eissn><abstract>In this study, an accurate and efficient quantum genetic algorithm (QGA) combined with an improved self-adaptive (SA) scheme is proposed to solve electromagnetic optimisation problems. QGA is employed as the main optimisation frame because of its wider search range and higher efficiency than the conventional genetic algorithm. By introducing an improved SA scheme, the population at each generation is divided into two groups for crossover operation according to the magnitudes of individual fitness values. The crossover probability and mutation rate remain unchanged at the early stage of iterative process while the SA scheme will be carried out for the rest of the iterative process. Moreover, the elitist model is introduced to save the optimal father-individuals and abandon the worst ones. All these strategies make the whole population nearly converge to the optimal solution very fast. In two numerical examples of filter design and linear array synthesis, the effectiveness of the author's proposed optimisation algorithm, combined with the finite-difference time-domain method and finite-element method in HFSS, respectively, is verified.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-map.2014.0034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8725 |
ispartof | IET microwaves, antennas & propagation, 2014-09, Vol.8 (12), p.965-972 |
issn | 1751-8725 1751-8733 1751-8733 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629369349 |
source | Wiley-Blackwell Open Access Titles |
subjects | Algorithms crossover operation crossover probability Crossovers electromagnetic optimisation problem electromagnetic wave propagation finite difference time‐domain analysis finite difference time‐domain method finite element analysis flnite element method frequency selective surfaces Genetic algorithms HFSS improved SA scheme Iterative methods Mathematical analysis Mathematical models mutation rate Optimization probability QGA quantum genetic algorithm Searching self‐adaptive genetic algorithm |
title | Improved self-adaptive genetic algorithm with quantum scheme for electromagnetic optimisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20self-adaptive%20genetic%20algorithm%20with%20quantum%20scheme%20for%20electromagnetic%20optimisation&rft.jtitle=IET%20microwaves,%20antennas%20&%20propagation&rft.au=Wei,%20Xiao-Kun&rft.date=2014-09&rft.volume=8&rft.issue=12&rft.spage=965&rft.epage=972&rft.pages=965-972&rft.issn=1751-8725&rft.eissn=1751-8733&rft_id=info:doi/10.1049/iet-map.2014.0034&rft_dat=%3Cproquest_24P%3E3457933121%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610295274&rft_id=info:pmid/&rfr_iscdi=true |