Smart Vogel's Approximation Method SVAM

Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer research 2014-03, Vol.4 (1), p.198-198
1. Verfasser: Almuttairi, Rafah M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 1
container_start_page 198
container_title International journal of advanced computer research
container_volume 4
creator Almuttairi, Rafah M
description Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629361842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629361842</sourcerecordid><originalsourceid>FETCH-LOGICAL-p612-1b9c4b8c819db51eb051c8a0d5fc0aa838cb504ea40777a844c7913f6237efce3</originalsourceid><addsrcrecordid>eNpdjstqwzAUREVpoSHNPxi6SDcGPa50paUJfUFCFwnZBkmWExfbci0b-vl1aVZdzTAchnNDFpwj5miQ3v52MDnOwz1ZpVQ7CoBAuaYLst63dhizYzyHZp2you-H-F23dqxjl-3CeIlltj8WuwdyV9kmhdU1l-Tw8nzYvOXbj9f3TbHNe8V4zpzx4LTXzJROsuCoZF5bWsrKU2u10N5JCsECRUSrATwaJirFBYbKB7EkT3-3s8bXFNJ4auvkQ9PYLsQpnZjiRiimgc_o4z_0M05DN8vNFOMSuJIofgDOEEqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612542657</pqid></control><display><type>article</type><title>Smart Vogel's Approximation Method SVAM</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Almuttairi, Rafah M</creator><creatorcontrib>Almuttairi, Rafah M</creatorcontrib><description>Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.</description><identifier>ISSN: 2249-7277</identifier><identifier>EISSN: 2277-7970</identifier><language>eng</language><publisher>Bhopal: Accent Social and Welfare Society</publisher><subject>Approximation ; Data transfer (computers) ; Dynamics ; Finishing ; Fluctuation ; Mathematical analysis ; Optimization ; Strategy</subject><ispartof>International journal of advanced computer research, 2014-03, Vol.4 (1), p.198-198</ispartof><rights>Copyright International Journal of Advanced Computer Research Mar 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Almuttairi, Rafah M</creatorcontrib><title>Smart Vogel's Approximation Method SVAM</title><title>International journal of advanced computer research</title><description>Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.</description><subject>Approximation</subject><subject>Data transfer (computers)</subject><subject>Dynamics</subject><subject>Finishing</subject><subject>Fluctuation</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Strategy</subject><issn>2249-7277</issn><issn>2277-7970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjstqwzAUREVpoSHNPxi6SDcGPa50paUJfUFCFwnZBkmWExfbci0b-vl1aVZdzTAchnNDFpwj5miQ3v52MDnOwz1ZpVQ7CoBAuaYLst63dhizYzyHZp2you-H-F23dqxjl-3CeIlltj8WuwdyV9kmhdU1l-Tw8nzYvOXbj9f3TbHNe8V4zpzx4LTXzJROsuCoZF5bWsrKU2u10N5JCsECRUSrATwaJirFBYbKB7EkT3-3s8bXFNJ4auvkQ9PYLsQpnZjiRiimgc_o4z_0M05DN8vNFOMSuJIofgDOEEqw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Almuttairi, Rafah M</creator><general>Accent Social and Welfare Society</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Smart Vogel's Approximation Method SVAM</title><author>Almuttairi, Rafah M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p612-1b9c4b8c819db51eb051c8a0d5fc0aa838cb504ea40777a844c7913f6237efce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Data transfer (computers)</topic><topic>Dynamics</topic><topic>Finishing</topic><topic>Fluctuation</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Almuttairi, Rafah M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almuttairi, Rafah M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Vogel's Approximation Method SVAM</atitle><jtitle>International journal of advanced computer research</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>198</spage><epage>198</epage><pages>198-198</pages><issn>2249-7277</issn><eissn>2277-7970</eissn><abstract>Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.</abstract><cop>Bhopal</cop><pub>Accent Social and Welfare Society</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2249-7277
ispartof International journal of advanced computer research, 2014-03, Vol.4 (1), p.198-198
issn 2249-7277
2277-7970
language eng
recordid cdi_proquest_miscellaneous_1629361842
source EZB-FREE-00999 freely available EZB journals
subjects Approximation
Data transfer (computers)
Dynamics
Finishing
Fluctuation
Mathematical analysis
Optimization
Strategy
title Smart Vogel's Approximation Method SVAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Vogel's%20Approximation%20Method%20SVAM&rft.jtitle=International%20journal%20of%20advanced%20computer%20research&rft.au=Almuttairi,%20Rafah%20M&rft.date=2014-03-01&rft.volume=4&rft.issue=1&rft.spage=198&rft.epage=198&rft.pages=198-198&rft.issn=2249-7277&rft.eissn=2277-7970&rft_id=info:doi/&rft_dat=%3Cproquest%3E1629361842%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612542657&rft_id=info:pmid/&rfr_iscdi=true