Smart Vogel's Approximation Method SVAM
Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuat...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer research 2014-03, Vol.4 (1), p.198-198 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | International journal of advanced computer research |
container_volume | 4 |
creator | Almuttairi, Rafah M |
description | Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629361842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629361842</sourcerecordid><originalsourceid>FETCH-LOGICAL-p612-1b9c4b8c819db51eb051c8a0d5fc0aa838cb504ea40777a844c7913f6237efce3</originalsourceid><addsrcrecordid>eNpdjstqwzAUREVpoSHNPxi6SDcGPa50paUJfUFCFwnZBkmWExfbci0b-vl1aVZdzTAchnNDFpwj5miQ3v52MDnOwz1ZpVQ7CoBAuaYLst63dhizYzyHZp2you-H-F23dqxjl-3CeIlltj8WuwdyV9kmhdU1l-Tw8nzYvOXbj9f3TbHNe8V4zpzx4LTXzJROsuCoZF5bWsrKU2u10N5JCsECRUSrATwaJirFBYbKB7EkT3-3s8bXFNJ4auvkQ9PYLsQpnZjiRiimgc_o4z_0M05DN8vNFOMSuJIofgDOEEqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612542657</pqid></control><display><type>article</type><title>Smart Vogel's Approximation Method SVAM</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Almuttairi, Rafah M</creator><creatorcontrib>Almuttairi, Rafah M</creatorcontrib><description>Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.</description><identifier>ISSN: 2249-7277</identifier><identifier>EISSN: 2277-7970</identifier><language>eng</language><publisher>Bhopal: Accent Social and Welfare Society</publisher><subject>Approximation ; Data transfer (computers) ; Dynamics ; Finishing ; Fluctuation ; Mathematical analysis ; Optimization ; Strategy</subject><ispartof>International journal of advanced computer research, 2014-03, Vol.4 (1), p.198-198</ispartof><rights>Copyright International Journal of Advanced Computer Research Mar 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Almuttairi, Rafah M</creatorcontrib><title>Smart Vogel's Approximation Method SVAM</title><title>International journal of advanced computer research</title><description>Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.</description><subject>Approximation</subject><subject>Data transfer (computers)</subject><subject>Dynamics</subject><subject>Finishing</subject><subject>Fluctuation</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Strategy</subject><issn>2249-7277</issn><issn>2277-7970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjstqwzAUREVpoSHNPxi6SDcGPa50paUJfUFCFwnZBkmWExfbci0b-vl1aVZdzTAchnNDFpwj5miQ3v52MDnOwz1ZpVQ7CoBAuaYLst63dhizYzyHZp2you-H-F23dqxjl-3CeIlltj8WuwdyV9kmhdU1l-Tw8nzYvOXbj9f3TbHNe8V4zpzx4LTXzJROsuCoZF5bWsrKU2u10N5JCsECRUSrATwaJirFBYbKB7EkT3-3s8bXFNJ4auvkQ9PYLsQpnZjiRiimgc_o4z_0M05DN8vNFOMSuJIofgDOEEqw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Almuttairi, Rafah M</creator><general>Accent Social and Welfare Society</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Smart Vogel's Approximation Method SVAM</title><author>Almuttairi, Rafah M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p612-1b9c4b8c819db51eb051c8a0d5fc0aa838cb504ea40777a844c7913f6237efce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Data transfer (computers)</topic><topic>Dynamics</topic><topic>Finishing</topic><topic>Fluctuation</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Strategy</topic><toplevel>online_resources</toplevel><creatorcontrib>Almuttairi, Rafah M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almuttairi, Rafah M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Vogel's Approximation Method SVAM</atitle><jtitle>International journal of advanced computer research</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>198</spage><epage>198</epage><pages>198-198</pages><issn>2249-7277</issn><eissn>2277-7970</eissn><abstract>Data Grid technology is designed to handle large-scale data management for worldwide distribution, primarily to improve data access and transfer performance. Several strategies have been used to exploit rate differences among various client-replica provider links and to address dynamic rate fluctuations by dividing replicas into multiple blocks of equal sizes. However, a major obstacle, the idle time of faster providers having to wait for the slowest provider to deliver the final block, makes it important to reduce differences in finishing time among replica servers. In this paper, we propose a dynamic optimization method, namely Smart Vogel's Approximation Method, to improve the performance of data transfer in Data Grids. Our approach reduces the differences that ideal time spent waiting for the slowest replica provider to be equal or less to the predefined data transfer completion time with minimum prices of replicas.</abstract><cop>Bhopal</cop><pub>Accent Social and Welfare Society</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2249-7277 |
ispartof | International journal of advanced computer research, 2014-03, Vol.4 (1), p.198-198 |
issn | 2249-7277 2277-7970 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629361842 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Data transfer (computers) Dynamics Finishing Fluctuation Mathematical analysis Optimization Strategy |
title | Smart Vogel's Approximation Method SVAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Vogel's%20Approximation%20Method%20SVAM&rft.jtitle=International%20journal%20of%20advanced%20computer%20research&rft.au=Almuttairi,%20Rafah%20M&rft.date=2014-03-01&rft.volume=4&rft.issue=1&rft.spage=198&rft.epage=198&rft.pages=198-198&rft.issn=2249-7277&rft.eissn=2277-7970&rft_id=info:doi/&rft_dat=%3Cproquest%3E1629361842%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612542657&rft_id=info:pmid/&rfr_iscdi=true |