Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-11, Vol.2 (42), p.17919-17924
Hauptverfasser: Bayliss, Ryan D., Cook, Stuart N., Scanlon, David O., Fearn, Sarah, Cabana, Jordi, Greaves, Colin, Kilner, John A., Skinner, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17924
container_issue 42
container_start_page 17919
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 2
creator Bayliss, Ryan D.
Cook, Stuart N.
Scanlon, David O.
Fearn, Sarah
Cabana, Jordi
Greaves, Colin
Kilner, John A.
Skinner, Stephen J.
description Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr sub(0.55)Na sub(0.45)SiO sub(2.775). The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr sub(0.8)K sub(0.2)Si sub(0.5)Ge sub(0.5)O sub(2.9) composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation.
doi_str_mv 10.1039/C4TA04299A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629361568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629361568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-5c2d6cbae448d0be793b33dea6bf2af664820b64b21834e5f773116a9209d683</originalsourceid><addsrcrecordid>eNpFUE1LAzEQDaJgqb34C3IUoZqvzW68leIXFLzU85LdTNpodlOTLFh_vVsrOoc3w_CY9-YhdEnJDSVc3S7FekEEU2pxgiaMFGReCiVP_-aqOkezlN7IWBUhUqkJ-nrtDcSUdW9cv8F5C9iAhTbjdgudSznucbBY-3ftHe4ga4_HZeizGzqcnHetzoBT8M4ccMgu9OkOuz65zTYnbGPoMHzuILoO-oxHoYNKiPsLdGa1TzD77VO0frhfL5_mq5fH5-ViNW85IXletMzIttEgRGVIA6XiDecGtGws01ZKUTHSSNEwWnEBhS1LTqnUihFlZMWn6Op4dhfDxwAp1-NbLXivewhDqqlkikta_FCvj9Q2hpQi2Ho3utZxX1NSHyKu_yPm32jFcL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629361568</pqid></control><display><type>article</type><title>Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Bayliss, Ryan D. ; Cook, Stuart N. ; Scanlon, David O. ; Fearn, Sarah ; Cabana, Jordi ; Greaves, Colin ; Kilner, John A. ; Skinner, Stephen J.</creator><creatorcontrib>Bayliss, Ryan D. ; Cook, Stuart N. ; Scanlon, David O. ; Fearn, Sarah ; Cabana, Jordi ; Greaves, Colin ; Kilner, John A. ; Skinner, Stephen J.</creatorcontrib><description>Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr sub(0.55)Na sub(0.45)SiO sub(2.775). The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr sub(0.8)K sub(0.2)Si sub(0.5)Ge sub(0.5)O sub(2.9) composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C4TA04299A</identifier><language>eng</language><subject>Alkali metals ; Density functional theory ; Oxides ; Silicates ; Solid solutions ; Strontium ; Sustainability ; Vacancies</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2014-11, Vol.2 (42), p.17919-17924</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-5c2d6cbae448d0be793b33dea6bf2af664820b64b21834e5f773116a9209d683</citedby><cites>FETCH-LOGICAL-c300t-5c2d6cbae448d0be793b33dea6bf2af664820b64b21834e5f773116a9209d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Bayliss, Ryan D.</creatorcontrib><creatorcontrib>Cook, Stuart N.</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>Fearn, Sarah</creatorcontrib><creatorcontrib>Cabana, Jordi</creatorcontrib><creatorcontrib>Greaves, Colin</creatorcontrib><creatorcontrib>Kilner, John A.</creatorcontrib><creatorcontrib>Skinner, Stephen J.</creatorcontrib><title>Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr sub(0.55)Na sub(0.45)SiO sub(2.775). The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr sub(0.8)K sub(0.2)Si sub(0.5)Ge sub(0.5)O sub(2.9) composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation.</description><subject>Alkali metals</subject><subject>Density functional theory</subject><subject>Oxides</subject><subject>Silicates</subject><subject>Solid solutions</subject><subject>Strontium</subject><subject>Sustainability</subject><subject>Vacancies</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEQDaJgqb34C3IUoZqvzW68leIXFLzU85LdTNpodlOTLFh_vVsrOoc3w_CY9-YhdEnJDSVc3S7FekEEU2pxgiaMFGReCiVP_-aqOkezlN7IWBUhUqkJ-nrtDcSUdW9cv8F5C9iAhTbjdgudSznucbBY-3ftHe4ga4_HZeizGzqcnHetzoBT8M4ccMgu9OkOuz65zTYnbGPoMHzuILoO-oxHoYNKiPsLdGa1TzD77VO0frhfL5_mq5fH5-ViNW85IXletMzIttEgRGVIA6XiDecGtGws01ZKUTHSSNEwWnEBhS1LTqnUihFlZMWn6Op4dhfDxwAp1-NbLXivewhDqqlkikta_FCvj9Q2hpQi2Ho3utZxX1NSHyKu_yPm32jFcL8</recordid><startdate>20141114</startdate><enddate>20141114</enddate><creator>Bayliss, Ryan D.</creator><creator>Cook, Stuart N.</creator><creator>Scanlon, David O.</creator><creator>Fearn, Sarah</creator><creator>Cabana, Jordi</creator><creator>Greaves, Colin</creator><creator>Kilner, John A.</creator><creator>Skinner, Stephen J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141114</creationdate><title>Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory</title><author>Bayliss, Ryan D. ; Cook, Stuart N. ; Scanlon, David O. ; Fearn, Sarah ; Cabana, Jordi ; Greaves, Colin ; Kilner, John A. ; Skinner, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-5c2d6cbae448d0be793b33dea6bf2af664820b64b21834e5f773116a9209d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkali metals</topic><topic>Density functional theory</topic><topic>Oxides</topic><topic>Silicates</topic><topic>Solid solutions</topic><topic>Strontium</topic><topic>Sustainability</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayliss, Ryan D.</creatorcontrib><creatorcontrib>Cook, Stuart N.</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>Fearn, Sarah</creatorcontrib><creatorcontrib>Cabana, Jordi</creatorcontrib><creatorcontrib>Greaves, Colin</creatorcontrib><creatorcontrib>Kilner, John A.</creatorcontrib><creatorcontrib>Skinner, Stephen J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayliss, Ryan D.</au><au>Cook, Stuart N.</au><au>Scanlon, David O.</au><au>Fearn, Sarah</au><au>Cabana, Jordi</au><au>Greaves, Colin</au><au>Kilner, John A.</au><au>Skinner, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2014-11-14</date><risdate>2014</risdate><volume>2</volume><issue>42</issue><spage>17919</spage><epage>17924</epage><pages>17919-17924</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr sub(0.55)Na sub(0.45)SiO sub(2.775). The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr sub(0.8)K sub(0.2)Si sub(0.5)Ge sub(0.5)O sub(2.9) composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation.</abstract><doi>10.1039/C4TA04299A</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2014-11, Vol.2 (42), p.17919-17924
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1629361568
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Alkali metals
Density functional theory
Oxides
Silicates
Solid solutions
Strontium
Sustainability
Vacancies
title Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20defect%20chemistry%20of%20alkali%20metal%20strontium%20silicate%20solid%20solutions:%20insights%20from%20experiment%20and%20theory&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Bayliss,%20Ryan%20D.&rft.date=2014-11-14&rft.volume=2&rft.issue=42&rft.spage=17919&rft.epage=17924&rft.pages=17919-17924&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C4TA04299A&rft_dat=%3Cproquest_cross%3E1629361568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629361568&rft_id=info:pmid/&rfr_iscdi=true