Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system

The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2014-01, Vol.384, p.61-72
Hauptverfasser: Boulay, E., Ragoen, C., Idrissi, H., Schryvers, D., Godet, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 61
container_title Journal of non-crystalline solids
container_volume 384
creator Boulay, E.
Ragoen, C.
Idrissi, H.
Schryvers, D.
Godet, S.
description The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the interplay between a prior amorphous phase separation and the crystallization of fresnoite in the BaO–TiO2–SiO2 system. The crystallization behavior of a non-stoichiometric composition inside the miscibility gap (called APS) is compared with the stoichiometric composition (called FRES) and a non-stoichiometric composition outside the miscibility gap (called NoAPS). The crystallization mechanisms are compared using differential thermal analysis (DTA) by calculating the Avrami parameters and the activation energies as a function of the particle size. The DTA study shows that the two non-stoichiometric compositions exhibit a pronounced surface crystallization behavior whereas FRES undergoes bulk nucleation. This is supported by a multi-scale microstructure characterization. Furthermore, this study demonstrates that the amorphous phase separation and the associated interfaces do not play any significant role in the nucleation step. Moreover, transmission electron microscope (TEM) and local orientation measurements show that the growth of the dendrites is not hindered by the SiO2-rich droplets. The final stage of crystallization of APS is tentatively explained by two composition effects that must be further investigated: the viscosity effect and the formation of a eutectic. •We study the influence of prior amorphous phase separation on crystallization.•Three compositions of interest exhibiting different microstructures are compared.•The crystallization mechanisms and activation energy are studied by DTA.•Microstructures and crystallographic orientation are studied by electronic microscopy.
doi_str_mv 10.1016/j.jnoncrysol.2013.06.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629361159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309313003694</els_id><sourcerecordid>1629361159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-931e56ad30cb53c2d8a3a543747639e88ccd2a07f30e8ff9bca86dfc798fa3f03</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVpodM076BNoRu7-hnL8rIJbRoIzKLJWtyRrzIaZMuVPIHpqu_QN8yTVMahXVYIDlzOuYf7EUI5qznj6tOxPo5xtOmcY6gF47JmqmZCviIbrltZbTUXr8mGMSEqyTr5lrzL-cjKa6XekPPt6MIJR4s0OgpDTNMhnjKdDpCRZpwgwezjSMufD0iXohlC8D_X8R4P8ORjWtKPAXKuLCYYvM3Ur4kr2D3_-n3vd6LI9yI0lxU4vCdvHISMly96QR6-frm__lbd7W5urz_fVXar2Vx1kmOjoJfM7htpRa9BQrOV7bZVskOtre0FsNZJhtq5bm9Bq97ZttMOpGPygnxc904p_jhhns3gs8UQYMRyqeFKdFJx3nTFqlerTTHnhM5MyQ-QzoYzs9A2R_OPtlloG6ZMoV2iH15aIFsILsFoff6bF5q1TaOWiqvVh-XkJ4_JZOsX_L1PaGfTR___sj_whp9R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629361159</pqid></control><display><type>article</type><title>Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system</title><source>Elsevier ScienceDirect Journals</source><creator>Boulay, E. ; Ragoen, C. ; Idrissi, H. ; Schryvers, D. ; Godet, S.</creator><creatorcontrib>Boulay, E. ; Ragoen, C. ; Idrissi, H. ; Schryvers, D. ; Godet, S.</creatorcontrib><description>The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the interplay between a prior amorphous phase separation and the crystallization of fresnoite in the BaO–TiO2–SiO2 system. The crystallization behavior of a non-stoichiometric composition inside the miscibility gap (called APS) is compared with the stoichiometric composition (called FRES) and a non-stoichiometric composition outside the miscibility gap (called NoAPS). The crystallization mechanisms are compared using differential thermal analysis (DTA) by calculating the Avrami parameters and the activation energies as a function of the particle size. The DTA study shows that the two non-stoichiometric compositions exhibit a pronounced surface crystallization behavior whereas FRES undergoes bulk nucleation. This is supported by a multi-scale microstructure characterization. Furthermore, this study demonstrates that the amorphous phase separation and the associated interfaces do not play any significant role in the nucleation step. Moreover, transmission electron microscope (TEM) and local orientation measurements show that the growth of the dendrites is not hindered by the SiO2-rich droplets. The final stage of crystallization of APS is tentatively explained by two composition effects that must be further investigated: the viscosity effect and the formation of a eutectic. •We study the influence of prior amorphous phase separation on crystallization.•Three compositions of interest exhibiting different microstructures are compared.•The crystallization mechanisms and activation energy are studied by DTA.•Microstructures and crystallographic orientation are studied by electronic microscopy.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2013.06.023</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Amorphous phase separation ; BaO–TiO2–SiO2 glass system ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Crystallization mechanism ; Dendritic structure ; Differential thermal analysis ; Droplets ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glasses (including metallic glasses) ; Growth from solid phases (including multiphase diffusion and recrystallization) ; Materials science ; Methods of crystal growth; physics of crystal growth ; Microstructures characterization ; Miscibility gap ; Nucleation ; Phase separation ; Physics ; Silicon dioxide ; Solid-solid transitions ; Solubility, segregation, and mixing; phase separation ; Specific materials ; Specific phase transitions</subject><ispartof>Journal of non-crystalline solids, 2014-01, Vol.384, p.61-72</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-931e56ad30cb53c2d8a3a543747639e88ccd2a07f30e8ff9bca86dfc798fa3f03</citedby><cites>FETCH-LOGICAL-c480t-931e56ad30cb53c2d8a3a543747639e88ccd2a07f30e8ff9bca86dfc798fa3f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2013.06.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3538,23912,23913,25122,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28075569$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulay, E.</creatorcontrib><creatorcontrib>Ragoen, C.</creatorcontrib><creatorcontrib>Idrissi, H.</creatorcontrib><creatorcontrib>Schryvers, D.</creatorcontrib><creatorcontrib>Godet, S.</creatorcontrib><title>Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system</title><title>Journal of non-crystalline solids</title><description>The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the interplay between a prior amorphous phase separation and the crystallization of fresnoite in the BaO–TiO2–SiO2 system. The crystallization behavior of a non-stoichiometric composition inside the miscibility gap (called APS) is compared with the stoichiometric composition (called FRES) and a non-stoichiometric composition outside the miscibility gap (called NoAPS). The crystallization mechanisms are compared using differential thermal analysis (DTA) by calculating the Avrami parameters and the activation energies as a function of the particle size. The DTA study shows that the two non-stoichiometric compositions exhibit a pronounced surface crystallization behavior whereas FRES undergoes bulk nucleation. This is supported by a multi-scale microstructure characterization. Furthermore, this study demonstrates that the amorphous phase separation and the associated interfaces do not play any significant role in the nucleation step. Moreover, transmission electron microscope (TEM) and local orientation measurements show that the growth of the dendrites is not hindered by the SiO2-rich droplets. The final stage of crystallization of APS is tentatively explained by two composition effects that must be further investigated: the viscosity effect and the formation of a eutectic. •We study the influence of prior amorphous phase separation on crystallization.•Three compositions of interest exhibiting different microstructures are compared.•The crystallization mechanisms and activation energy are studied by DTA.•Microstructures and crystallographic orientation are studied by electronic microscopy.</description><subject>Amorphous phase separation</subject><subject>BaO–TiO2–SiO2 glass system</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Crystallization mechanism</subject><subject>Dendritic structure</subject><subject>Differential thermal analysis</subject><subject>Droplets</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glasses (including metallic glasses)</subject><subject>Growth from solid phases (including multiphase diffusion and recrystallization)</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Microstructures characterization</subject><subject>Miscibility gap</subject><subject>Nucleation</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Silicon dioxide</subject><subject>Solid-solid transitions</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Specific materials</subject><subject>Specific phase transitions</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAUhUVpodM076BNoRu7-hnL8rIJbRoIzKLJWtyRrzIaZMuVPIHpqu_QN8yTVMahXVYIDlzOuYf7EUI5qznj6tOxPo5xtOmcY6gF47JmqmZCviIbrltZbTUXr8mGMSEqyTr5lrzL-cjKa6XekPPt6MIJR4s0OgpDTNMhnjKdDpCRZpwgwezjSMufD0iXohlC8D_X8R4P8ORjWtKPAXKuLCYYvM3Ur4kr2D3_-n3vd6LI9yI0lxU4vCdvHISMly96QR6-frm__lbd7W5urz_fVXar2Vx1kmOjoJfM7htpRa9BQrOV7bZVskOtre0FsNZJhtq5bm9Bq97ZttMOpGPygnxc904p_jhhns3gs8UQYMRyqeFKdFJx3nTFqlerTTHnhM5MyQ-QzoYzs9A2R_OPtlloG6ZMoV2iH15aIFsILsFoff6bF5q1TaOWiqvVh-XkJ4_JZOsX_L1PaGfTR___sj_whp9R</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Boulay, E.</creator><creator>Ragoen, C.</creator><creator>Idrissi, H.</creator><creator>Schryvers, D.</creator><creator>Godet, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140115</creationdate><title>Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system</title><author>Boulay, E. ; Ragoen, C. ; Idrissi, H. ; Schryvers, D. ; Godet, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-931e56ad30cb53c2d8a3a543747639e88ccd2a07f30e8ff9bca86dfc798fa3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amorphous phase separation</topic><topic>BaO–TiO2–SiO2 glass system</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Crystallization mechanism</topic><topic>Dendritic structure</topic><topic>Differential thermal analysis</topic><topic>Droplets</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glasses (including metallic glasses)</topic><topic>Growth from solid phases (including multiphase diffusion and recrystallization)</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Microstructures characterization</topic><topic>Miscibility gap</topic><topic>Nucleation</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Silicon dioxide</topic><topic>Solid-solid transitions</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Specific materials</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulay, E.</creatorcontrib><creatorcontrib>Ragoen, C.</creatorcontrib><creatorcontrib>Idrissi, H.</creatorcontrib><creatorcontrib>Schryvers, D.</creatorcontrib><creatorcontrib>Godet, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulay, E.</au><au>Ragoen, C.</au><au>Idrissi, H.</au><au>Schryvers, D.</au><au>Godet, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2014-01-15</date><risdate>2014</risdate><volume>384</volume><spage>61</spage><epage>72</epage><pages>61-72</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>The possible role of a prior amorphous phase separation on the subsequent crystallization has been the topic of vigorous debates over the last decades and has not yet been clarified, especially regarding the role of the interfaces created by the phase separation. This study proposes to focus on the interplay between a prior amorphous phase separation and the crystallization of fresnoite in the BaO–TiO2–SiO2 system. The crystallization behavior of a non-stoichiometric composition inside the miscibility gap (called APS) is compared with the stoichiometric composition (called FRES) and a non-stoichiometric composition outside the miscibility gap (called NoAPS). The crystallization mechanisms are compared using differential thermal analysis (DTA) by calculating the Avrami parameters and the activation energies as a function of the particle size. The DTA study shows that the two non-stoichiometric compositions exhibit a pronounced surface crystallization behavior whereas FRES undergoes bulk nucleation. This is supported by a multi-scale microstructure characterization. Furthermore, this study demonstrates that the amorphous phase separation and the associated interfaces do not play any significant role in the nucleation step. Moreover, transmission electron microscope (TEM) and local orientation measurements show that the growth of the dendrites is not hindered by the SiO2-rich droplets. The final stage of crystallization of APS is tentatively explained by two composition effects that must be further investigated: the viscosity effect and the formation of a eutectic. •We study the influence of prior amorphous phase separation on crystallization.•Three compositions of interest exhibiting different microstructures are compared.•The crystallization mechanisms and activation energy are studied by DTA.•Microstructures and crystallographic orientation are studied by electronic microscopy.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2013.06.023</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2014-01, Vol.384, p.61-72
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_1629361159
source Elsevier ScienceDirect Journals
subjects Amorphous phase separation
BaO–TiO2–SiO2 glass system
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization
Crystallization mechanism
Dendritic structure
Differential thermal analysis
Droplets
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Glasses (including metallic glasses)
Growth from solid phases (including multiphase diffusion and recrystallization)
Materials science
Methods of crystal growth
physics of crystal growth
Microstructures characterization
Miscibility gap
Nucleation
Phase separation
Physics
Silicon dioxide
Solid-solid transitions
Solubility, segregation, and mixing
phase separation
Specific materials
Specific phase transitions
title Influence of amorphous phase separation on the crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20amorphous%20phase%20separation%20on%20the%20crystallization%20behavior%20of%20glass-ceramics%20in%20the%20BaO%E2%80%93TiO2%E2%80%93SiO2%20system&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Boulay,%20E.&rft.date=2014-01-15&rft.volume=384&rft.spage=61&rft.epage=72&rft.pages=61-72&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2013.06.023&rft_dat=%3Cproquest_cross%3E1629361159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629361159&rft_id=info:pmid/&rft_els_id=S0022309313003694&rfr_iscdi=true