Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel
The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an ac...
Gespeichert in:
Veröffentlicht in: | International journal of engineering science 2014-07, Vol.80, p.90-105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | |
container_start_page | 90 |
container_title | International journal of engineering science |
container_volume | 80 |
creator | Karyakin, Mikhail Kalashnikov, Vitaliy Shubchinskaya, Nataliya |
description | The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented. |
doi_str_mv | 10.1016/j.ijengsci.2014.02.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629360477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722514000445</els_id><sourcerecordid>1629360477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</originalsourceid><addsrcrecordid>eNqFUF1r4zAQFEcPmvbuLxQ99sXpSrYs6-1K6ReE9qWFexPKepVTcORUcgr99yeT9rmwsOwyM8wMYxcClgJEe7Vdhi3FTcawlCCaJcgy9Q-2EJ02lRRGn7AFgIRKS6lO2VnOWwBQtTEL9vdpjEOI5BIn7wmnzEPkju8HF4nv07geaMdHz6d_5Twk4muKfYib-ecip8HlKSBPheri5jAUoX2hDr_YT--GTL8_9zl7vbt9uXmoVs_3jzfXqwqlVlNFRjmPuqMOFUg0a6XQYAOthN50uu86haJpUJPyKHrAdd-53ptOeF0DtvU5uzzqFq9vB8qT3YWMNMz-x0O2opWmbqHRukDbIxTTmHMib_cp7Fz6sALsXKXd2q8q7VylBVmmLsQ_RyKVIO-Bki0Iikh9mHPbfgzfSfwHTzOA9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629360477</pqid></control><display><type>article</type><title>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Karyakin, Mikhail ; Kalashnikov, Vitaliy ; Shubchinskaya, Nataliya</creator><creatorcontrib>Karyakin, Mikhail ; Kalashnikov, Vitaliy ; Shubchinskaya, Nataliya</creatorcontrib><description>The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2014.02.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Bending ; Bifurcations ; Cross sections ; Falling ; Large strains ; Panels ; Planes ; Pure bending ; Representations ; Stability</subject><ispartof>International journal of engineering science, 2014-07, Vol.80, p.90-105</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</citedby><cites>FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2014.02.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Karyakin, Mikhail</creatorcontrib><creatorcontrib>Kalashnikov, Vitaliy</creatorcontrib><creatorcontrib>Shubchinskaya, Nataliya</creatorcontrib><title>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</title><title>International journal of engineering science</title><description>The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.</description><subject>Approximation</subject><subject>Bending</subject><subject>Bifurcations</subject><subject>Cross sections</subject><subject>Falling</subject><subject>Large strains</subject><subject>Panels</subject><subject>Planes</subject><subject>Pure bending</subject><subject>Representations</subject><subject>Stability</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUF1r4zAQFEcPmvbuLxQ99sXpSrYs6-1K6ReE9qWFexPKepVTcORUcgr99yeT9rmwsOwyM8wMYxcClgJEe7Vdhi3FTcawlCCaJcgy9Q-2EJ02lRRGn7AFgIRKS6lO2VnOWwBQtTEL9vdpjEOI5BIn7wmnzEPkju8HF4nv07geaMdHz6d_5Twk4muKfYib-ecip8HlKSBPheri5jAUoX2hDr_YT--GTL8_9zl7vbt9uXmoVs_3jzfXqwqlVlNFRjmPuqMOFUg0a6XQYAOthN50uu86haJpUJPyKHrAdd-53ptOeF0DtvU5uzzqFq9vB8qT3YWMNMz-x0O2opWmbqHRukDbIxTTmHMib_cp7Fz6sALsXKXd2q8q7VylBVmmLsQ_RyKVIO-Bki0Iikh9mHPbfgzfSfwHTzOA9w</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Karyakin, Mikhail</creator><creator>Kalashnikov, Vitaliy</creator><creator>Shubchinskaya, Nataliya</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201407</creationdate><title>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</title><author>Karyakin, Mikhail ; Kalashnikov, Vitaliy ; Shubchinskaya, Nataliya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Bending</topic><topic>Bifurcations</topic><topic>Cross sections</topic><topic>Falling</topic><topic>Large strains</topic><topic>Panels</topic><topic>Planes</topic><topic>Pure bending</topic><topic>Representations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karyakin, Mikhail</creatorcontrib><creatorcontrib>Kalashnikov, Vitaliy</creatorcontrib><creatorcontrib>Shubchinskaya, Nataliya</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karyakin, Mikhail</au><au>Kalashnikov, Vitaliy</au><au>Shubchinskaya, Nataliya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</atitle><jtitle>International journal of engineering science</jtitle><date>2014-07</date><risdate>2014</risdate><volume>80</volume><spage>90</spage><epage>105</epage><pages>90-105</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2014.02.023</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7225 |
ispartof | International journal of engineering science, 2014-07, Vol.80, p.90-105 |
issn | 0020-7225 1879-2197 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629360477 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Approximation Bending Bifurcations Cross sections Falling Large strains Panels Planes Pure bending Representations Stability |
title | Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20effects%20in%20a%20plane%20problem%20of%20the%20pure%20bending%20of%20an%20elastic%20rectangular%20panel&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Karyakin,%20Mikhail&rft.date=2014-07&rft.volume=80&rft.spage=90&rft.epage=105&rft.pages=90-105&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2014.02.023&rft_dat=%3Cproquest_cross%3E1629360477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629360477&rft_id=info:pmid/&rft_els_id=S0020722514000445&rfr_iscdi=true |