Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel

The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2014-07, Vol.80, p.90-105
Hauptverfasser: Karyakin, Mikhail, Kalashnikov, Vitaliy, Shubchinskaya, Nataliya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 90
container_title International journal of engineering science
container_volume 80
creator Karyakin, Mikhail
Kalashnikov, Vitaliy
Shubchinskaya, Nataliya
description The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.
doi_str_mv 10.1016/j.ijengsci.2014.02.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629360477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722514000445</els_id><sourcerecordid>1629360477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</originalsourceid><addsrcrecordid>eNqFUF1r4zAQFEcPmvbuLxQ99sXpSrYs6-1K6ReE9qWFexPKepVTcORUcgr99yeT9rmwsOwyM8wMYxcClgJEe7Vdhi3FTcawlCCaJcgy9Q-2EJ02lRRGn7AFgIRKS6lO2VnOWwBQtTEL9vdpjEOI5BIn7wmnzEPkju8HF4nv07geaMdHz6d_5Twk4muKfYib-ecip8HlKSBPheri5jAUoX2hDr_YT--GTL8_9zl7vbt9uXmoVs_3jzfXqwqlVlNFRjmPuqMOFUg0a6XQYAOthN50uu86haJpUJPyKHrAdd-53ptOeF0DtvU5uzzqFq9vB8qT3YWMNMz-x0O2opWmbqHRukDbIxTTmHMib_cp7Fz6sALsXKXd2q8q7VylBVmmLsQ_RyKVIO-Bki0Iikh9mHPbfgzfSfwHTzOA9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629360477</pqid></control><display><type>article</type><title>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Karyakin, Mikhail ; Kalashnikov, Vitaliy ; Shubchinskaya, Nataliya</creator><creatorcontrib>Karyakin, Mikhail ; Kalashnikov, Vitaliy ; Shubchinskaya, Nataliya</creatorcontrib><description>The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2014.02.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Bending ; Bifurcations ; Cross sections ; Falling ; Large strains ; Panels ; Planes ; Pure bending ; Representations ; Stability</subject><ispartof>International journal of engineering science, 2014-07, Vol.80, p.90-105</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</citedby><cites>FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2014.02.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Karyakin, Mikhail</creatorcontrib><creatorcontrib>Kalashnikov, Vitaliy</creatorcontrib><creatorcontrib>Shubchinskaya, Nataliya</creatorcontrib><title>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</title><title>International journal of engineering science</title><description>The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.</description><subject>Approximation</subject><subject>Bending</subject><subject>Bifurcations</subject><subject>Cross sections</subject><subject>Falling</subject><subject>Large strains</subject><subject>Panels</subject><subject>Planes</subject><subject>Pure bending</subject><subject>Representations</subject><subject>Stability</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUF1r4zAQFEcPmvbuLxQ99sXpSrYs6-1K6ReE9qWFexPKepVTcORUcgr99yeT9rmwsOwyM8wMYxcClgJEe7Vdhi3FTcawlCCaJcgy9Q-2EJ02lRRGn7AFgIRKS6lO2VnOWwBQtTEL9vdpjEOI5BIn7wmnzEPkju8HF4nv07geaMdHz6d_5Twk4muKfYib-ecip8HlKSBPheri5jAUoX2hDr_YT--GTL8_9zl7vbt9uXmoVs_3jzfXqwqlVlNFRjmPuqMOFUg0a6XQYAOthN50uu86haJpUJPyKHrAdd-53ptOeF0DtvU5uzzqFq9vB8qT3YWMNMz-x0O2opWmbqHRukDbIxTTmHMib_cp7Fz6sALsXKXd2q8q7VylBVmmLsQ_RyKVIO-Bki0Iikh9mHPbfgzfSfwHTzOA9w</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Karyakin, Mikhail</creator><creator>Kalashnikov, Vitaliy</creator><creator>Shubchinskaya, Nataliya</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201407</creationdate><title>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</title><author>Karyakin, Mikhail ; Kalashnikov, Vitaliy ; Shubchinskaya, Nataliya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e95afc78e8c502c9b55c9c40620d987d885c144c7e5fc1d0cbd8adf981f730c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Bending</topic><topic>Bifurcations</topic><topic>Cross sections</topic><topic>Falling</topic><topic>Large strains</topic><topic>Panels</topic><topic>Planes</topic><topic>Pure bending</topic><topic>Representations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karyakin, Mikhail</creatorcontrib><creatorcontrib>Kalashnikov, Vitaliy</creatorcontrib><creatorcontrib>Shubchinskaya, Nataliya</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karyakin, Mikhail</au><au>Kalashnikov, Vitaliy</au><au>Shubchinskaya, Nataliya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel</atitle><jtitle>International journal of engineering science</jtitle><date>2014-07</date><risdate>2014</risdate><volume>80</volume><spage>90</spage><epage>105</epage><pages>90-105</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>The paper presents a modification of the semi-inverse representation of the pure bending deformation of a prismatic panel with rectangular cross-section that is suitable for the method of successive approximations (or Signorinis expansion method). This modification was used to investigate with an accuracy to second order terms the plane problem of pure bending for three different models of nonlinearly elastic behavior: harmonic material, Blatz and Ko material, Murnaghan material. It was found that the typical diagram of bending has maximum point followed by falling region. To study the stability of the bent panel the bifurcation approach was used. Some results about the position of bifurcation points at the loading diagram depending on the material and geometrical parameters are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2014.02.023</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2014-07, Vol.80, p.90-105
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_miscellaneous_1629360477
source ScienceDirect Journals (5 years ago - present)
subjects Approximation
Bending
Bifurcations
Cross sections
Falling
Large strains
Panels
Planes
Pure bending
Representations
Stability
title Nonlinear effects in a plane problem of the pure bending of an elastic rectangular panel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20effects%20in%20a%20plane%20problem%20of%20the%20pure%20bending%20of%20an%20elastic%20rectangular%20panel&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Karyakin,%20Mikhail&rft.date=2014-07&rft.volume=80&rft.spage=90&rft.epage=105&rft.pages=90-105&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2014.02.023&rft_dat=%3Cproquest_cross%3E1629360477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629360477&rft_id=info:pmid/&rft_els_id=S0020722514000445&rfr_iscdi=true