Automatic marker generation for watershed segmentation of natural images
Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers a...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2014-08, Vol.50 (18), p.1281-1283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 18 |
container_start_page | 1281 |
container_title | Electronics letters |
container_volume | 50 |
creator | Sigut, J Fumero, F Nuñez, O Sigut, M |
description | Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms. |
doi_str_mv | 10.1049/el.2014.2705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629358926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629358926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVooUuaW3-AoS30UG9Hsj6sYxo2TcHQSwK9iVl5vHHrj61kE_LvK-PQJKX0JBg98_DOy9gbDlsO0n6ibiuAy60woE7YhhcKcsv59xdsA8CLXHErX7GzGNt9wrjUIPmGXZ3P09jj1Pqsx_CTQnaggUIajEPWjCG7w4lCvKU6i3ToaZjWr7HJBpzmgF3W9nig-Jq9bLCLdPbwnrKby931xVVeffvy9eK8yr00QuS6VBJ1rYUlSWCKupElNkbvPVjwNdWajMUSTSG8qb0uLVoUdg9KFLQvRHHKPqzeYxh_zRQn17fRU9fhQOMcHU_qQpVW6IS-_Qv9Mc5hSOkSxYVSYDVP1MeV8mGMMVDjjiGdFO4dB7c066hzS7NuaTbh7x-kGD12TcDBt_HPjihLMCUsWrVyd21H9_91ul1Vic-XwI1c7nu37rX0JO-ueoIf6-axhmfYPxP_BsGPoCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612550961</pqid></control><display><type>article</type><title>Automatic marker generation for watershed segmentation of natural images</title><source>Wiley Online Library Open Access</source><creator>Sigut, J ; Fumero, F ; Nuñez, O ; Sigut, M</creator><creatorcontrib>Sigut, J ; Fumero, F ; Nuñez, O ; Sigut, M</creatorcontrib><description>Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2014.2705</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>3D colour histogram ; Applied sciences ; Artificial intelligence ; automatic marker generation ; automatic marker selection ; Automation ; Berkeley segmentation dataset ; BSDS500 ; Color ; Colour ; Computer science; control theory; systems ; Exact sciences and technology ; Image and vision processing and display technology ; image colour analysis ; image segmentation ; Markers ; natural images ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Three dimensional ; three‐dimensional colour histogram ; watershed segmentation ; Watersheds</subject><ispartof>Electronics letters, 2014-08, Vol.50 (18), p.1281-1283</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering & Technology Aug 28, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</citedby><cites>FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2014.2705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2014.2705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2014.2705$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28807801$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sigut, J</creatorcontrib><creatorcontrib>Fumero, F</creatorcontrib><creatorcontrib>Nuñez, O</creatorcontrib><creatorcontrib>Sigut, M</creatorcontrib><title>Automatic marker generation for watershed segmentation of natural images</title><title>Electronics letters</title><description>Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.</description><subject>3D colour histogram</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>automatic marker generation</subject><subject>automatic marker selection</subject><subject>Automation</subject><subject>Berkeley segmentation dataset</subject><subject>BSDS500</subject><subject>Color</subject><subject>Colour</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image and vision processing and display technology</subject><subject>image colour analysis</subject><subject>image segmentation</subject><subject>Markers</subject><subject>natural images</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Three dimensional</subject><subject>three‐dimensional colour histogram</subject><subject>watershed segmentation</subject><subject>Watersheds</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1r3DAQhkVooUuaW3-AoS30UG9Hsj6sYxo2TcHQSwK9iVl5vHHrj61kE_LvK-PQJKX0JBg98_DOy9gbDlsO0n6ibiuAy60woE7YhhcKcsv59xdsA8CLXHErX7GzGNt9wrjUIPmGXZ3P09jj1Pqsx_CTQnaggUIajEPWjCG7w4lCvKU6i3ToaZjWr7HJBpzmgF3W9nig-Jq9bLCLdPbwnrKby931xVVeffvy9eK8yr00QuS6VBJ1rYUlSWCKupElNkbvPVjwNdWajMUSTSG8qb0uLVoUdg9KFLQvRHHKPqzeYxh_zRQn17fRU9fhQOMcHU_qQpVW6IS-_Qv9Mc5hSOkSxYVSYDVP1MeV8mGMMVDjjiGdFO4dB7c066hzS7NuaTbh7x-kGD12TcDBt_HPjihLMCUsWrVyd21H9_91ul1Vic-XwI1c7nu37rX0JO-ueoIf6-axhmfYPxP_BsGPoCk</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Sigut, J</creator><creator>Fumero, F</creator><creator>Nuñez, O</creator><creator>Sigut, M</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140828</creationdate><title>Automatic marker generation for watershed segmentation of natural images</title><author>Sigut, J ; Fumero, F ; Nuñez, O ; Sigut, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3D colour histogram</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>automatic marker generation</topic><topic>automatic marker selection</topic><topic>Automation</topic><topic>Berkeley segmentation dataset</topic><topic>BSDS500</topic><topic>Color</topic><topic>Colour</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image and vision processing and display technology</topic><topic>image colour analysis</topic><topic>image segmentation</topic><topic>Markers</topic><topic>natural images</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Three dimensional</topic><topic>three‐dimensional colour histogram</topic><topic>watershed segmentation</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigut, J</creatorcontrib><creatorcontrib>Fumero, F</creatorcontrib><creatorcontrib>Nuñez, O</creatorcontrib><creatorcontrib>Sigut, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sigut, J</au><au>Fumero, F</au><au>Nuñez, O</au><au>Sigut, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic marker generation for watershed segmentation of natural images</atitle><jtitle>Electronics letters</jtitle><date>2014-08-28</date><risdate>2014</risdate><volume>50</volume><issue>18</issue><spage>1281</spage><epage>1283</epage><pages>1281-1283</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2014.2705</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2014-08, Vol.50 (18), p.1281-1283 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_proquest_miscellaneous_1629358926 |
source | Wiley Online Library Open Access |
subjects | 3D colour histogram Applied sciences Artificial intelligence automatic marker generation automatic marker selection Automation Berkeley segmentation dataset BSDS500 Color Colour Computer science control theory systems Exact sciences and technology Image and vision processing and display technology image colour analysis image segmentation Markers natural images Pattern recognition. Digital image processing. Computational geometry Segmentation Three dimensional three‐dimensional colour histogram watershed segmentation Watersheds |
title | Automatic marker generation for watershed segmentation of natural images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20marker%20generation%20for%20watershed%20segmentation%20of%20natural%20images&rft.jtitle=Electronics%20letters&rft.au=Sigut,%20J&rft.date=2014-08-28&rft.volume=50&rft.issue=18&rft.spage=1281&rft.epage=1283&rft.pages=1281-1283&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/10.1049/el.2014.2705&rft_dat=%3Cproquest_24P%3E1629358926%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612550961&rft_id=info:pmid/&rfr_iscdi=true |