Automatic marker generation for watershed segmentation of natural images

Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2014-08, Vol.50 (18), p.1281-1283
Hauptverfasser: Sigut, J, Fumero, F, Nuñez, O, Sigut, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 18
container_start_page 1281
container_title Electronics letters
container_volume 50
creator Sigut, J
Fumero, F
Nuñez, O
Sigut, M
description Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.
doi_str_mv 10.1049/el.2014.2705
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629358926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629358926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVooUuaW3-AoS30UG9Hsj6sYxo2TcHQSwK9iVl5vHHrj61kE_LvK-PQJKX0JBg98_DOy9gbDlsO0n6ibiuAy60woE7YhhcKcsv59xdsA8CLXHErX7GzGNt9wrjUIPmGXZ3P09jj1Pqsx_CTQnaggUIajEPWjCG7w4lCvKU6i3ToaZjWr7HJBpzmgF3W9nig-Jq9bLCLdPbwnrKby931xVVeffvy9eK8yr00QuS6VBJ1rYUlSWCKupElNkbvPVjwNdWajMUSTSG8qb0uLVoUdg9KFLQvRHHKPqzeYxh_zRQn17fRU9fhQOMcHU_qQpVW6IS-_Qv9Mc5hSOkSxYVSYDVP1MeV8mGMMVDjjiGdFO4dB7c066hzS7NuaTbh7x-kGD12TcDBt_HPjihLMCUsWrVyd21H9_91ul1Vic-XwI1c7nu37rX0JO-ueoIf6-axhmfYPxP_BsGPoCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612550961</pqid></control><display><type>article</type><title>Automatic marker generation for watershed segmentation of natural images</title><source>Wiley Online Library Open Access</source><creator>Sigut, J ; Fumero, F ; Nuñez, O ; Sigut, M</creator><creatorcontrib>Sigut, J ; Fumero, F ; Nuñez, O ; Sigut, M</creatorcontrib><description>Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2014.2705</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>3D colour histogram ; Applied sciences ; Artificial intelligence ; automatic marker generation ; automatic marker selection ; Automation ; Berkeley segmentation dataset ; BSDS500 ; Color ; Colour ; Computer science; control theory; systems ; Exact sciences and technology ; Image and vision processing and display technology ; image colour analysis ; image segmentation ; Markers ; natural images ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Three dimensional ; three‐dimensional colour histogram ; watershed segmentation ; Watersheds</subject><ispartof>Electronics letters, 2014-08, Vol.50 (18), p.1281-1283</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering &amp; Technology Aug 28, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</citedby><cites>FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2014.2705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2014.2705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2014.2705$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28807801$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sigut, J</creatorcontrib><creatorcontrib>Fumero, F</creatorcontrib><creatorcontrib>Nuñez, O</creatorcontrib><creatorcontrib>Sigut, M</creatorcontrib><title>Automatic marker generation for watershed segmentation of natural images</title><title>Electronics letters</title><description>Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.</description><subject>3D colour histogram</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>automatic marker generation</subject><subject>automatic marker selection</subject><subject>Automation</subject><subject>Berkeley segmentation dataset</subject><subject>BSDS500</subject><subject>Color</subject><subject>Colour</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image and vision processing and display technology</subject><subject>image colour analysis</subject><subject>image segmentation</subject><subject>Markers</subject><subject>natural images</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Three dimensional</subject><subject>three‐dimensional colour histogram</subject><subject>watershed segmentation</subject><subject>Watersheds</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1r3DAQhkVooUuaW3-AoS30UG9Hsj6sYxo2TcHQSwK9iVl5vHHrj61kE_LvK-PQJKX0JBg98_DOy9gbDlsO0n6ibiuAy60woE7YhhcKcsv59xdsA8CLXHErX7GzGNt9wrjUIPmGXZ3P09jj1Pqsx_CTQnaggUIajEPWjCG7w4lCvKU6i3ToaZjWr7HJBpzmgF3W9nig-Jq9bLCLdPbwnrKby931xVVeffvy9eK8yr00QuS6VBJ1rYUlSWCKupElNkbvPVjwNdWajMUSTSG8qb0uLVoUdg9KFLQvRHHKPqzeYxh_zRQn17fRU9fhQOMcHU_qQpVW6IS-_Qv9Mc5hSOkSxYVSYDVP1MeV8mGMMVDjjiGdFO4dB7c066hzS7NuaTbh7x-kGD12TcDBt_HPjihLMCUsWrVyd21H9_91ul1Vic-XwI1c7nu37rX0JO-ueoIf6-axhmfYPxP_BsGPoCk</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Sigut, J</creator><creator>Fumero, F</creator><creator>Nuñez, O</creator><creator>Sigut, M</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140828</creationdate><title>Automatic marker generation for watershed segmentation of natural images</title><author>Sigut, J ; Fumero, F ; Nuñez, O ; Sigut, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4722-6854a6d629e4e073df48af76bc090cded6e79a8a732c7dc689a9a29b0523eb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3D colour histogram</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>automatic marker generation</topic><topic>automatic marker selection</topic><topic>Automation</topic><topic>Berkeley segmentation dataset</topic><topic>BSDS500</topic><topic>Color</topic><topic>Colour</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image and vision processing and display technology</topic><topic>image colour analysis</topic><topic>image segmentation</topic><topic>Markers</topic><topic>natural images</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Three dimensional</topic><topic>three‐dimensional colour histogram</topic><topic>watershed segmentation</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigut, J</creatorcontrib><creatorcontrib>Fumero, F</creatorcontrib><creatorcontrib>Nuñez, O</creatorcontrib><creatorcontrib>Sigut, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sigut, J</au><au>Fumero, F</au><au>Nuñez, O</au><au>Sigut, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic marker generation for watershed segmentation of natural images</atitle><jtitle>Electronics letters</jtitle><date>2014-08-28</date><risdate>2014</risdate><volume>50</volume><issue>18</issue><spage>1281</spage><epage>1283</epage><pages>1281-1283</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>Automatic marker selection for watershed segmentation is a difficult problem. Most of the existing procedures are intended for specific application fields and usually require some prior knowledge about the problem at hand. A simple and general method for generating markers is proposed. The markers are obtained from the splitting of the three-dimensional (3D) colour histogram of the image and imposed as minima for watershed segmentation. The method has been tested on natural images from the Berkeley segmentation dataset (BSDS500), showing results comparable with the state-of-the-art segmentation algorithms.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2014.2705</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2014-08, Vol.50 (18), p.1281-1283
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_proquest_miscellaneous_1629358926
source Wiley Online Library Open Access
subjects 3D colour histogram
Applied sciences
Artificial intelligence
automatic marker generation
automatic marker selection
Automation
Berkeley segmentation dataset
BSDS500
Color
Colour
Computer science
control theory
systems
Exact sciences and technology
Image and vision processing and display technology
image colour analysis
image segmentation
Markers
natural images
Pattern recognition. Digital image processing. Computational geometry
Segmentation
Three dimensional
three‐dimensional colour histogram
watershed segmentation
Watersheds
title Automatic marker generation for watershed segmentation of natural images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20marker%20generation%20for%20watershed%20segmentation%20of%20natural%20images&rft.jtitle=Electronics%20letters&rft.au=Sigut,%20J&rft.date=2014-08-28&rft.volume=50&rft.issue=18&rft.spage=1281&rft.epage=1283&rft.pages=1281-1283&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/10.1049/el.2014.2705&rft_dat=%3Cproquest_24P%3E1629358926%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612550961&rft_id=info:pmid/&rfr_iscdi=true