Nonlinear multivariate curve resolution alternating least squares (NL-MCR-ALS)

Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2014-10, Vol.28 (10), p.740-748
Hauptverfasser: Pomerantsev, Alexey L., Zontov, Yuri V., Rodionova, Oxana Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 10
container_start_page 740
container_title Journal of chemometrics
container_volume 28
creator Pomerantsev, Alexey L.
Zontov, Yuri V.
Rodionova, Oxana Ye
description Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods. Copyright © 2014 John Wiley & Sons, Ltd. Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods.
doi_str_mv 10.1002/cem.2666
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629355200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3499312941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4346-a184411b1fd05f97a0414bc2d210e2af139436faa2c20924ee3d0cdb2a74067e3</originalsourceid><addsrcrecordid>eNp10EtLw0AUBeBBFKxV8CcE3NRF6rwySZYSahVqRKvY3XCb3sjUaWJnEh__3lRFUXB1F_fjwDmEHDI6ZJTykwJXQ66U2iI9RtM0ZDyZbZMeTRIVpiIRu2TP-yWl3U_IHsnzurKmQnDBqrWNeQZnoMGgaN0zBg59bdvG1FUAtkFXQWOqh8Ai-Cbw6xY6EAzySXiZ3YSnk-nxPtkpwXo8-Lp9cnc2us3Ow8nV-CI7nYSFFFKFwBIpGZuzckGjMo2BSibnBV9wRpFDyUQqhSoBeMFpyiWiWNBiMecQS6piFH0y-Mx9cvW6Rd_olfEFWgsV1q3XTPFURBGntKNHf-iybrsm9kNFUSJ4kvwEFq723mGpn5xZgXvTjOrNsLobVm-G7Wj4SV-Mxbd_nc5Gl7-98Q2-fntwj1rFIo70fT7W-XTG0-l1pDPxDum9hyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625583288</pqid></control><display><type>article</type><title>Nonlinear multivariate curve resolution alternating least squares (NL-MCR-ALS)</title><source>Access via Wiley Online Library</source><creator>Pomerantsev, Alexey L. ; Zontov, Yuri V. ; Rodionova, Oxana Ye</creator><creatorcontrib>Pomerantsev, Alexey L. ; Zontov, Yuri V. ; Rodionova, Oxana Ye</creatorcontrib><description>Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods. Copyright © 2014 John Wiley &amp; Sons, Ltd. Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2666</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Absorbance ; Accuracy ; ALS ; Calibration ; Chemometrics ; Flattening ; Lambert-Beer law violations ; Law ; Least squares method ; MCR ; Multivariate analysis ; nitric acid ; Nonlinearity ; nonlinearity, peak saturation ; peak saturation ; Spectra</subject><ispartof>Journal of chemometrics, 2014-10, Vol.28 (10), p.740-748</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4346-a184411b1fd05f97a0414bc2d210e2af139436faa2c20924ee3d0cdb2a74067e3</citedby><cites>FETCH-LOGICAL-c4346-a184411b1fd05f97a0414bc2d210e2af139436faa2c20924ee3d0cdb2a74067e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2666$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2666$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Pomerantsev, Alexey L.</creatorcontrib><creatorcontrib>Zontov, Yuri V.</creatorcontrib><creatorcontrib>Rodionova, Oxana Ye</creatorcontrib><title>Nonlinear multivariate curve resolution alternating least squares (NL-MCR-ALS)</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods. Copyright © 2014 John Wiley &amp; Sons, Ltd. Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods.</description><subject>Absorbance</subject><subject>Accuracy</subject><subject>ALS</subject><subject>Calibration</subject><subject>Chemometrics</subject><subject>Flattening</subject><subject>Lambert-Beer law violations</subject><subject>Law</subject><subject>Least squares method</subject><subject>MCR</subject><subject>Multivariate analysis</subject><subject>nitric acid</subject><subject>Nonlinearity</subject><subject>nonlinearity, peak saturation</subject><subject>peak saturation</subject><subject>Spectra</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10EtLw0AUBeBBFKxV8CcE3NRF6rwySZYSahVqRKvY3XCb3sjUaWJnEh__3lRFUXB1F_fjwDmEHDI6ZJTykwJXQ66U2iI9RtM0ZDyZbZMeTRIVpiIRu2TP-yWl3U_IHsnzurKmQnDBqrWNeQZnoMGgaN0zBg59bdvG1FUAtkFXQWOqh8Ai-Cbw6xY6EAzySXiZ3YSnk-nxPtkpwXo8-Lp9cnc2us3Ow8nV-CI7nYSFFFKFwBIpGZuzckGjMo2BSibnBV9wRpFDyUQqhSoBeMFpyiWiWNBiMecQS6piFH0y-Mx9cvW6Rd_olfEFWgsV1q3XTPFURBGntKNHf-iybrsm9kNFUSJ4kvwEFq723mGpn5xZgXvTjOrNsLobVm-G7Wj4SV-Mxbd_nc5Gl7-98Q2-fntwj1rFIo70fT7W-XTG0-l1pDPxDum9hyA</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Pomerantsev, Alexey L.</creator><creator>Zontov, Yuri V.</creator><creator>Rodionova, Oxana Ye</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201410</creationdate><title>Nonlinear multivariate curve resolution alternating least squares (NL-MCR-ALS)</title><author>Pomerantsev, Alexey L. ; Zontov, Yuri V. ; Rodionova, Oxana Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4346-a184411b1fd05f97a0414bc2d210e2af139436faa2c20924ee3d0cdb2a74067e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorbance</topic><topic>Accuracy</topic><topic>ALS</topic><topic>Calibration</topic><topic>Chemometrics</topic><topic>Flattening</topic><topic>Lambert-Beer law violations</topic><topic>Law</topic><topic>Least squares method</topic><topic>MCR</topic><topic>Multivariate analysis</topic><topic>nitric acid</topic><topic>Nonlinearity</topic><topic>nonlinearity, peak saturation</topic><topic>peak saturation</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomerantsev, Alexey L.</creatorcontrib><creatorcontrib>Zontov, Yuri V.</creatorcontrib><creatorcontrib>Rodionova, Oxana Ye</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomerantsev, Alexey L.</au><au>Zontov, Yuri V.</au><au>Rodionova, Oxana Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear multivariate curve resolution alternating least squares (NL-MCR-ALS)</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2014-10</date><risdate>2014</risdate><volume>28</volume><issue>10</issue><spage>740</spage><epage>748</epage><pages>740-748</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods. Copyright © 2014 John Wiley &amp; Sons, Ltd. Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The developed theory is applied to calibration of spectral data that includes the so‐called saturated peaks, which are flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing methods.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2666</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2014-10, Vol.28 (10), p.740-748
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_miscellaneous_1629355200
source Access via Wiley Online Library
subjects Absorbance
Accuracy
ALS
Calibration
Chemometrics
Flattening
Lambert-Beer law violations
Law
Least squares method
MCR
Multivariate analysis
nitric acid
Nonlinearity
nonlinearity, peak saturation
peak saturation
Spectra
title Nonlinear multivariate curve resolution alternating least squares (NL-MCR-ALS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20multivariate%20curve%20resolution%20alternating%20least%20squares%20(NL-MCR-ALS)&rft.jtitle=Journal%20of%20chemometrics&rft.au=Pomerantsev,%20Alexey%20L.&rft.date=2014-10&rft.volume=28&rft.issue=10&rft.spage=740&rft.epage=748&rft.pages=740-748&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2666&rft_dat=%3Cproquest_cross%3E3499312941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625583288&rft_id=info:pmid/&rfr_iscdi=true