Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication

Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-10, Vol.24 (40), p.6389-6400
Hauptverfasser: Tarasov, Alexey, Campbell, Philip M., Tsai, Meng-Yen, Hesabi, Zohreh R., Feirer, Janine, Graham, Samuel, Ready, W. Jud, Vogel, Eric M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6400
container_issue 40
container_start_page 6389
container_title Advanced functional materials
container_volume 24
creator Tarasov, Alexey
Campbell, Philip M.
Tsai, Meng-Yen
Hesabi, Zohreh R.
Feirer, Janine
Graham, Samuel
Ready, W. Jud
Vogel, Eric M.
description Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing. A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (>10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.
doi_str_mv 10.1002/adfm.201401389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629354627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629354627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURiMEEqWwMmdkSbHjxE7GqqUt0MdAq7JZjn0NBqcpdgPk39MqqGJjunc45xtOEFxj1MMIxbdC6bIXI5wgTLL8JOhgimlEUJydHn_8fB5ceP-GEGaMJJ1gMTEvr7YJVxujK1eGS2esaMCFs8o2hYJNXYZD42urjYJwj4RrocFFT1JYCIfwaSSEI1E4I8XOVJvL4EwL6-Hq93aD1ehuOZhE08X4ftCfRjLJaR6xrMhIlqgU40QykRIgKsmQQgx0wiQoJDWloIsMYgKAKC5ioYqCEaFVlgrSDW7a3a2rPmrwO14aL8FasYGq9hzTOCdpQmO2R3stKl3lvQPNt86UwjUcI34oxw_l-LHcXshb4ctYaP6heX84mv11o9Y1fgffR1e4d04ZYSlfz8d88DibrHM25w_kB9rvglw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629354627</pqid></control><display><type>article</type><title>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tarasov, Alexey ; Campbell, Philip M. ; Tsai, Meng-Yen ; Hesabi, Zohreh R. ; Feirer, Janine ; Graham, Samuel ; Ready, W. Jud ; Vogel, Eric M.</creator><creatorcontrib>Tarasov, Alexey ; Campbell, Philip M. ; Tsai, Meng-Yen ; Hesabi, Zohreh R. ; Feirer, Janine ; Graham, Samuel ; Ready, W. Jud ; Vogel, Eric M.</creatorcontrib><description>Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (&gt; 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing. A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (&gt;10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201401389</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Evaporation ; field-effect transistor ; Geology ; Graphene ; intrinsic field-effect mobility ; Molybdenum disulfide ; MoS2 growth ; Sulfurization ; Synthesis ; Thin films ; Variability ; wafer-scale device fabrication</subject><ispartof>Advanced functional materials, 2014-10, Vol.24 (40), p.6389-6400</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</citedby><cites>FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201401389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201401389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tarasov, Alexey</creatorcontrib><creatorcontrib>Campbell, Philip M.</creatorcontrib><creatorcontrib>Tsai, Meng-Yen</creatorcontrib><creatorcontrib>Hesabi, Zohreh R.</creatorcontrib><creatorcontrib>Feirer, Janine</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Ready, W. Jud</creatorcontrib><creatorcontrib>Vogel, Eric M.</creatorcontrib><title>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (&gt; 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing. A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (&gt;10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.</description><subject>Evaporation</subject><subject>field-effect transistor</subject><subject>Geology</subject><subject>Graphene</subject><subject>intrinsic field-effect mobility</subject><subject>Molybdenum disulfide</subject><subject>MoS2 growth</subject><subject>Sulfurization</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Variability</subject><subject>wafer-scale device fabrication</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURiMEEqWwMmdkSbHjxE7GqqUt0MdAq7JZjn0NBqcpdgPk39MqqGJjunc45xtOEFxj1MMIxbdC6bIXI5wgTLL8JOhgimlEUJydHn_8fB5ceP-GEGaMJJ1gMTEvr7YJVxujK1eGS2esaMCFs8o2hYJNXYZD42urjYJwj4RrocFFT1JYCIfwaSSEI1E4I8XOVJvL4EwL6-Hq93aD1ehuOZhE08X4ftCfRjLJaR6xrMhIlqgU40QykRIgKsmQQgx0wiQoJDWloIsMYgKAKC5ioYqCEaFVlgrSDW7a3a2rPmrwO14aL8FasYGq9hzTOCdpQmO2R3stKl3lvQPNt86UwjUcI34oxw_l-LHcXshb4ctYaP6heX84mv11o9Y1fgffR1e4d04ZYSlfz8d88DibrHM25w_kB9rvglw</recordid><startdate>20141029</startdate><enddate>20141029</enddate><creator>Tarasov, Alexey</creator><creator>Campbell, Philip M.</creator><creator>Tsai, Meng-Yen</creator><creator>Hesabi, Zohreh R.</creator><creator>Feirer, Janine</creator><creator>Graham, Samuel</creator><creator>Ready, W. Jud</creator><creator>Vogel, Eric M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141029</creationdate><title>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</title><author>Tarasov, Alexey ; Campbell, Philip M. ; Tsai, Meng-Yen ; Hesabi, Zohreh R. ; Feirer, Janine ; Graham, Samuel ; Ready, W. Jud ; Vogel, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Evaporation</topic><topic>field-effect transistor</topic><topic>Geology</topic><topic>Graphene</topic><topic>intrinsic field-effect mobility</topic><topic>Molybdenum disulfide</topic><topic>MoS2 growth</topic><topic>Sulfurization</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Variability</topic><topic>wafer-scale device fabrication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarasov, Alexey</creatorcontrib><creatorcontrib>Campbell, Philip M.</creatorcontrib><creatorcontrib>Tsai, Meng-Yen</creatorcontrib><creatorcontrib>Hesabi, Zohreh R.</creatorcontrib><creatorcontrib>Feirer, Janine</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Ready, W. Jud</creatorcontrib><creatorcontrib>Vogel, Eric M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarasov, Alexey</au><au>Campbell, Philip M.</au><au>Tsai, Meng-Yen</au><au>Hesabi, Zohreh R.</au><au>Feirer, Janine</au><au>Graham, Samuel</au><au>Ready, W. Jud</au><au>Vogel, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-10-29</date><risdate>2014</risdate><volume>24</volume><issue>40</issue><spage>6389</spage><epage>6400</epage><pages>6389-6400</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (&gt; 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing. A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (&gt;10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201401389</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2014-10, Vol.24 (40), p.6389-6400
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1629354627
source Wiley Online Library Journals Frontfile Complete
subjects Evaporation
field-effect transistor
Geology
Graphene
intrinsic field-effect mobility
Molybdenum disulfide
MoS2 growth
Sulfurization
Synthesis
Thin films
Variability
wafer-scale device fabrication
title Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Uniform%20Trilayer%20Molybdenum%20Disulfide%20for%20Wafer-Scale%20Device%20Fabrication&rft.jtitle=Advanced%20functional%20materials&rft.au=Tarasov,%20Alexey&rft.date=2014-10-29&rft.volume=24&rft.issue=40&rft.spage=6389&rft.epage=6400&rft.pages=6389-6400&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201401389&rft_dat=%3Cproquest_cross%3E1629354627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629354627&rft_id=info:pmid/&rfr_iscdi=true