Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication
Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challe...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2014-10, Vol.24 (40), p.6389-6400 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6400 |
---|---|
container_issue | 40 |
container_start_page | 6389 |
container_title | Advanced functional materials |
container_volume | 24 |
creator | Tarasov, Alexey Campbell, Philip M. Tsai, Meng-Yen Hesabi, Zohreh R. Feirer, Janine Graham, Samuel Ready, W. Jud Vogel, Eric M. |
description | Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.
A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (>10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1. |
doi_str_mv | 10.1002/adfm.201401389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629354627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629354627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURiMEEqWwMmdkSbHjxE7GqqUt0MdAq7JZjn0NBqcpdgPk39MqqGJjunc45xtOEFxj1MMIxbdC6bIXI5wgTLL8JOhgimlEUJydHn_8fB5ceP-GEGaMJJ1gMTEvr7YJVxujK1eGS2esaMCFs8o2hYJNXYZD42urjYJwj4RrocFFT1JYCIfwaSSEI1E4I8XOVJvL4EwL6-Hq93aD1ehuOZhE08X4ftCfRjLJaR6xrMhIlqgU40QykRIgKsmQQgx0wiQoJDWloIsMYgKAKC5ioYqCEaFVlgrSDW7a3a2rPmrwO14aL8FasYGq9hzTOCdpQmO2R3stKl3lvQPNt86UwjUcI34oxw_l-LHcXshb4ctYaP6heX84mv11o9Y1fgffR1e4d04ZYSlfz8d88DibrHM25w_kB9rvglw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629354627</pqid></control><display><type>article</type><title>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tarasov, Alexey ; Campbell, Philip M. ; Tsai, Meng-Yen ; Hesabi, Zohreh R. ; Feirer, Janine ; Graham, Samuel ; Ready, W. Jud ; Vogel, Eric M.</creator><creatorcontrib>Tarasov, Alexey ; Campbell, Philip M. ; Tsai, Meng-Yen ; Hesabi, Zohreh R. ; Feirer, Janine ; Graham, Samuel ; Ready, W. Jud ; Vogel, Eric M.</creatorcontrib><description>Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.
A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (>10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201401389</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Evaporation ; field-effect transistor ; Geology ; Graphene ; intrinsic field-effect mobility ; Molybdenum disulfide ; MoS2 growth ; Sulfurization ; Synthesis ; Thin films ; Variability ; wafer-scale device fabrication</subject><ispartof>Advanced functional materials, 2014-10, Vol.24 (40), p.6389-6400</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</citedby><cites>FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201401389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201401389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tarasov, Alexey</creatorcontrib><creatorcontrib>Campbell, Philip M.</creatorcontrib><creatorcontrib>Tsai, Meng-Yen</creatorcontrib><creatorcontrib>Hesabi, Zohreh R.</creatorcontrib><creatorcontrib>Feirer, Janine</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Ready, W. Jud</creatorcontrib><creatorcontrib>Vogel, Eric M.</creatorcontrib><title>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.
A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (>10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.</description><subject>Evaporation</subject><subject>field-effect transistor</subject><subject>Geology</subject><subject>Graphene</subject><subject>intrinsic field-effect mobility</subject><subject>Molybdenum disulfide</subject><subject>MoS2 growth</subject><subject>Sulfurization</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Variability</subject><subject>wafer-scale device fabrication</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURiMEEqWwMmdkSbHjxE7GqqUt0MdAq7JZjn0NBqcpdgPk39MqqGJjunc45xtOEFxj1MMIxbdC6bIXI5wgTLL8JOhgimlEUJydHn_8fB5ceP-GEGaMJJ1gMTEvr7YJVxujK1eGS2esaMCFs8o2hYJNXYZD42urjYJwj4RrocFFT1JYCIfwaSSEI1E4I8XOVJvL4EwL6-Hq93aD1ehuOZhE08X4ftCfRjLJaR6xrMhIlqgU40QykRIgKsmQQgx0wiQoJDWloIsMYgKAKC5ioYqCEaFVlgrSDW7a3a2rPmrwO14aL8FasYGq9hzTOCdpQmO2R3stKl3lvQPNt86UwjUcI34oxw_l-LHcXshb4ctYaP6heX84mv11o9Y1fgffR1e4d04ZYSlfz8d88DibrHM25w_kB9rvglw</recordid><startdate>20141029</startdate><enddate>20141029</enddate><creator>Tarasov, Alexey</creator><creator>Campbell, Philip M.</creator><creator>Tsai, Meng-Yen</creator><creator>Hesabi, Zohreh R.</creator><creator>Feirer, Janine</creator><creator>Graham, Samuel</creator><creator>Ready, W. Jud</creator><creator>Vogel, Eric M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141029</creationdate><title>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</title><author>Tarasov, Alexey ; Campbell, Philip M. ; Tsai, Meng-Yen ; Hesabi, Zohreh R. ; Feirer, Janine ; Graham, Samuel ; Ready, W. Jud ; Vogel, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4969-78b8384d5114c7a53e3d480d07ef47ced0cf66efb8e23ee061b2adbb73afd85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Evaporation</topic><topic>field-effect transistor</topic><topic>Geology</topic><topic>Graphene</topic><topic>intrinsic field-effect mobility</topic><topic>Molybdenum disulfide</topic><topic>MoS2 growth</topic><topic>Sulfurization</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Variability</topic><topic>wafer-scale device fabrication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarasov, Alexey</creatorcontrib><creatorcontrib>Campbell, Philip M.</creatorcontrib><creatorcontrib>Tsai, Meng-Yen</creatorcontrib><creatorcontrib>Hesabi, Zohreh R.</creatorcontrib><creatorcontrib>Feirer, Janine</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Ready, W. Jud</creatorcontrib><creatorcontrib>Vogel, Eric M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarasov, Alexey</au><au>Campbell, Philip M.</au><au>Tsai, Meng-Yen</au><au>Hesabi, Zohreh R.</au><au>Feirer, Janine</au><au>Graham, Samuel</au><au>Ready, W. Jud</au><au>Vogel, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-10-29</date><risdate>2014</risdate><volume>24</volume><issue>40</issue><spage>6389</spage><epage>6400</epage><pages>6389-6400</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.
A temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films is presented. The resulting film quality is similar to geological MoS2. An unprecedented uniformity of ±0.07 nm over a large area (>10 cm2) is achieved with trilayer MoS2. The estimated intrinsic field‐effect mobility is approximately 6.5 ± 2.2 cm2 V–1 s–1.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201401389</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2014-10, Vol.24 (40), p.6389-6400 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629354627 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Evaporation field-effect transistor Geology Graphene intrinsic field-effect mobility Molybdenum disulfide MoS2 growth Sulfurization Synthesis Thin films Variability wafer-scale device fabrication |
title | Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Uniform%20Trilayer%20Molybdenum%20Disulfide%20for%20Wafer-Scale%20Device%20Fabrication&rft.jtitle=Advanced%20functional%20materials&rft.au=Tarasov,%20Alexey&rft.date=2014-10-29&rft.volume=24&rft.issue=40&rft.spage=6389&rft.epage=6400&rft.pages=6389-6400&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201401389&rft_dat=%3Cproquest_cross%3E1629354627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629354627&rft_id=info:pmid/&rfr_iscdi=true |