Learning to annotate via social interaction analytics
Recent years have witnessed increased interests in exploiting automatic annotating techniques for managing and retrieving media contents. Previous studies on automatic annotating usually rely on the metadata which are often unavailable for use. Instead, multimedia contents usually arouse frequent pr...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2014-11, Vol.41 (2), p.251-276 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | Knowledge and information systems |
container_volume | 41 |
creator | Xu, Tong Zhu, Hengshu Chen, Enhong Huai, Baoxing Xiong, Hui Tian, Jilei |
description | Recent years have witnessed increased interests in exploiting automatic annotating techniques for managing and retrieving media contents. Previous studies on automatic annotating usually rely on the metadata which are often unavailable for use. Instead, multimedia contents usually arouse frequent
preference-sensitive interactions
in the online social networks of public social media platforms, which can be organized in the form of
interaction graph
for intensive study. Inspired by this observation, we propose a novel media annotating method based on the analytics of
streaming social interactions
of media content instead of the metadata. The basic assumption of our approach is that different types of social media content may attract latent social group with different preferences, thus generate different preference-sensitive interactions, which could be reflected as localized dense subgraph with clear preferences. To this end, we first iteratively select nodes from streaming records to build the
preference-sensitive subgraphs
, then uniformly extract several static and topologic features to describe these subgraphs, and finally integrate these features into a learning-to-rank framework for automatic annotating. Extensive experiments on several real-world date sets clearly show that the proposed approach outperforms the baseline methods with a significant margin. |
doi_str_mv | 10.1007/s10115-013-0717-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629347905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629347905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-81a84a4b72594c009b272f250db1d99279a2a8c16bd3702126eeaae828fe1d353</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLcFL16imexHNkcpfkHBi57DbDZbUrZJTVKh_94s24MInmZgnvdleAi5AXYPjImHCAygpgxKygQI2p6QBeMgaQnQnB53KIU4JxcxbhgD0QAsSL0yGJx16yL5Ap3zCZMpvi0W0WuLY2FdMgF1st7lO46HZHW8ImcDjtFcH-cl-Xx--li-0tX7y9vycUV1BTLRFrCtsOoEr2WlGZMdF3zgNes76KXkQiLHVkPT9aXIH_LGGETT8nYw0Jd1eUnu5t5d8F97E5Pa2qjNOKIzfh8VNFyWlZBsQm__oBu_D_nhiQKeO-uKZwpmSgcfYzCD2gW7xXBQwNQkUs0iVRapJpGqzRk-Z2Jm3dqEX83_hn4A6-ZzuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1612828542</pqid></control><display><type>article</type><title>Learning to annotate via social interaction analytics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Tong ; Zhu, Hengshu ; Chen, Enhong ; Huai, Baoxing ; Xiong, Hui ; Tian, Jilei</creator><creatorcontrib>Xu, Tong ; Zhu, Hengshu ; Chen, Enhong ; Huai, Baoxing ; Xiong, Hui ; Tian, Jilei</creatorcontrib><description>Recent years have witnessed increased interests in exploiting automatic annotating techniques for managing and retrieving media contents. Previous studies on automatic annotating usually rely on the metadata which are often unavailable for use. Instead, multimedia contents usually arouse frequent
preference-sensitive interactions
in the online social networks of public social media platforms, which can be organized in the form of
interaction graph
for intensive study. Inspired by this observation, we propose a novel media annotating method based on the analytics of
streaming social interactions
of media content instead of the metadata. The basic assumption of our approach is that different types of social media content may attract latent social group with different preferences, thus generate different preference-sensitive interactions, which could be reflected as localized dense subgraph with clear preferences. To this end, we first iteratively select nodes from streaming records to build the
preference-sensitive subgraphs
, then uniformly extract several static and topologic features to describe these subgraphs, and finally integrate these features into a learning-to-rank framework for automatic annotating. Extensive experiments on several real-world date sets clearly show that the proposed approach outperforms the baseline methods with a significant margin.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-013-0717-8</identifier><identifier>CODEN: KISNCR</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Annotations ; Automation ; Computer Science ; Construction ; Data Mining and Knowledge Discovery ; Database Management ; Digital media ; Information management ; Information Storage and Retrieval ; Information systems ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Media ; Metadata ; Multimedia ; Preferences ; Regular Paper ; Semantics ; Social interaction ; Social networks ; Studies ; User generated content</subject><ispartof>Knowledge and information systems, 2014-11, Vol.41 (2), p.251-276</ispartof><rights>Springer-Verlag London 2013</rights><rights>Springer-Verlag London 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-81a84a4b72594c009b272f250db1d99279a2a8c16bd3702126eeaae828fe1d353</citedby><cites>FETCH-LOGICAL-c419t-81a84a4b72594c009b272f250db1d99279a2a8c16bd3702126eeaae828fe1d353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-013-0717-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-013-0717-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xu, Tong</creatorcontrib><creatorcontrib>Zhu, Hengshu</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><creatorcontrib>Huai, Baoxing</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Tian, Jilei</creatorcontrib><title>Learning to annotate via social interaction analytics</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Recent years have witnessed increased interests in exploiting automatic annotating techniques for managing and retrieving media contents. Previous studies on automatic annotating usually rely on the metadata which are often unavailable for use. Instead, multimedia contents usually arouse frequent
preference-sensitive interactions
in the online social networks of public social media platforms, which can be organized in the form of
interaction graph
for intensive study. Inspired by this observation, we propose a novel media annotating method based on the analytics of
streaming social interactions
of media content instead of the metadata. The basic assumption of our approach is that different types of social media content may attract latent social group with different preferences, thus generate different preference-sensitive interactions, which could be reflected as localized dense subgraph with clear preferences. To this end, we first iteratively select nodes from streaming records to build the
preference-sensitive subgraphs
, then uniformly extract several static and topologic features to describe these subgraphs, and finally integrate these features into a learning-to-rank framework for automatic annotating. Extensive experiments on several real-world date sets clearly show that the proposed approach outperforms the baseline methods with a significant margin.</description><subject>Annotations</subject><subject>Automation</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Digital media</subject><subject>Information management</subject><subject>Information Storage and Retrieval</subject><subject>Information systems</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Media</subject><subject>Metadata</subject><subject>Multimedia</subject><subject>Preferences</subject><subject>Regular Paper</subject><subject>Semantics</subject><subject>Social interaction</subject><subject>Social networks</subject><subject>Studies</subject><subject>User generated content</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWD9-gLcFL16imexHNkcpfkHBi57DbDZbUrZJTVKh_94s24MInmZgnvdleAi5AXYPjImHCAygpgxKygQI2p6QBeMgaQnQnB53KIU4JxcxbhgD0QAsSL0yGJx16yL5Ap3zCZMpvi0W0WuLY2FdMgF1st7lO46HZHW8ImcDjtFcH-cl-Xx--li-0tX7y9vycUV1BTLRFrCtsOoEr2WlGZMdF3zgNes76KXkQiLHVkPT9aXIH_LGGETT8nYw0Jd1eUnu5t5d8F97E5Pa2qjNOKIzfh8VNFyWlZBsQm__oBu_D_nhiQKeO-uKZwpmSgcfYzCD2gW7xXBQwNQkUs0iVRapJpGqzRk-Z2Jm3dqEX83_hn4A6-ZzuA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Xu, Tong</creator><creator>Zhu, Hengshu</creator><creator>Chen, Enhong</creator><creator>Huai, Baoxing</creator><creator>Xiong, Hui</creator><creator>Tian, Jilei</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20141101</creationdate><title>Learning to annotate via social interaction analytics</title><author>Xu, Tong ; Zhu, Hengshu ; Chen, Enhong ; Huai, Baoxing ; Xiong, Hui ; Tian, Jilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-81a84a4b72594c009b272f250db1d99279a2a8c16bd3702126eeaae828fe1d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annotations</topic><topic>Automation</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Digital media</topic><topic>Information management</topic><topic>Information Storage and Retrieval</topic><topic>Information systems</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Media</topic><topic>Metadata</topic><topic>Multimedia</topic><topic>Preferences</topic><topic>Regular Paper</topic><topic>Semantics</topic><topic>Social interaction</topic><topic>Social networks</topic><topic>Studies</topic><topic>User generated content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tong</creatorcontrib><creatorcontrib>Zhu, Hengshu</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><creatorcontrib>Huai, Baoxing</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Tian, Jilei</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tong</au><au>Zhu, Hengshu</au><au>Chen, Enhong</au><au>Huai, Baoxing</au><au>Xiong, Hui</au><au>Tian, Jilei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to annotate via social interaction analytics</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>41</volume><issue>2</issue><spage>251</spage><epage>276</epage><pages>251-276</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><coden>KISNCR</coden><abstract>Recent years have witnessed increased interests in exploiting automatic annotating techniques for managing and retrieving media contents. Previous studies on automatic annotating usually rely on the metadata which are often unavailable for use. Instead, multimedia contents usually arouse frequent
preference-sensitive interactions
in the online social networks of public social media platforms, which can be organized in the form of
interaction graph
for intensive study. Inspired by this observation, we propose a novel media annotating method based on the analytics of
streaming social interactions
of media content instead of the metadata. The basic assumption of our approach is that different types of social media content may attract latent social group with different preferences, thus generate different preference-sensitive interactions, which could be reflected as localized dense subgraph with clear preferences. To this end, we first iteratively select nodes from streaming records to build the
preference-sensitive subgraphs
, then uniformly extract several static and topologic features to describe these subgraphs, and finally integrate these features into a learning-to-rank framework for automatic annotating. Extensive experiments on several real-world date sets clearly show that the proposed approach outperforms the baseline methods with a significant margin.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-013-0717-8</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2014-11, Vol.41 (2), p.251-276 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629347905 |
source | SpringerLink Journals - AutoHoldings |
subjects | Annotations Automation Computer Science Construction Data Mining and Knowledge Discovery Database Management Digital media Information management Information Storage and Retrieval Information systems Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Media Metadata Multimedia Preferences Regular Paper Semantics Social interaction Social networks Studies User generated content |
title | Learning to annotate via social interaction analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20annotate%20via%20social%20interaction%20analytics&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Xu,%20Tong&rft.date=2014-11-01&rft.volume=41&rft.issue=2&rft.spage=251&rft.epage=276&rft.pages=251-276&rft.issn=0219-1377&rft.eissn=0219-3116&rft.coden=KISNCR&rft_id=info:doi/10.1007/s10115-013-0717-8&rft_dat=%3Cproquest_cross%3E1629347905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1612828542&rft_id=info:pmid/&rfr_iscdi=true |