Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements

We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2014-01, Vol.46 (4), p.2692-2729
Hauptverfasser: Alessandrini, Giovanni, Di Cristo, Michele, Morassi, Antonino, Rosset, Edi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2729
container_issue 4
container_start_page 2692
container_title SIAM journal on mathematical analysis
container_volume 46
creator Alessandrini, Giovanni
Di Cristo, Michele
Morassi, Antonino
Rosset, Edi
description We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.
doi_str_mv 10.1137/130946307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629346136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629346136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKcP_oM86kP13iZNmkedUwcTBfW53KYJVNp0Ju3D_v02Jj4dPvg4HA5j1wh3iELfowAjlQB9wmYIpsg0FvKUzQCEylAinLOLlH4AUEkDM_bxOVLdOf7kRhf7NtDYDoEPnlPgq2C7KR24DQdedpTG1vLHodnyervPKTQUt_zNUZqi610Y0yU789Qld_WXc_b9vPxavGbr95fV4mGd2VzlY1YX6LUHT1qUjSMjSk8klLZosLSgtfEojaobDbmBsihMowhzyKVEkqYUc3Zz7N3E4Xdyaaz6NlnXdRTcMKUKVW6EVCjUXr09qjYOKUXnq01s-_3wCqE6vFb9vyZ28s9dEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629346136</pqid></control><display><type>article</type><title>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Alessandrini, Giovanni ; Di Cristo, Michele ; Morassi, Antonino ; Rosset, Edi</creator><creatorcontrib>Alessandrini, Giovanni ; Di Cristo, Michele ; Morassi, Antonino ; Rosset, Edi</creatorcontrib><description>We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130946307</identifier><language>eng</language><subject>Asymptotic properties ; Boundaries ; Constants ; Elastic bodies ; Inclusions ; Inequalities ; Mathematical analysis ; Regularity</subject><ispartof>SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.2692-2729</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</citedby><cites>FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids></links><search><creatorcontrib>Alessandrini, Giovanni</creatorcontrib><creatorcontrib>Di Cristo, Michele</creatorcontrib><creatorcontrib>Morassi, Antonino</creatorcontrib><creatorcontrib>Rosset, Edi</creatorcontrib><title>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</title><title>SIAM journal on mathematical analysis</title><description>We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.</description><subject>Asymptotic properties</subject><subject>Boundaries</subject><subject>Constants</subject><subject>Elastic bodies</subject><subject>Inclusions</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Regularity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKcP_oM86kP13iZNmkedUwcTBfW53KYJVNp0Ju3D_v02Jj4dPvg4HA5j1wh3iELfowAjlQB9wmYIpsg0FvKUzQCEylAinLOLlH4AUEkDM_bxOVLdOf7kRhf7NtDYDoEPnlPgq2C7KR24DQdedpTG1vLHodnyervPKTQUt_zNUZqi610Y0yU789Qld_WXc_b9vPxavGbr95fV4mGd2VzlY1YX6LUHT1qUjSMjSk8klLZosLSgtfEojaobDbmBsihMowhzyKVEkqYUc3Zz7N3E4Xdyaaz6NlnXdRTcMKUKVW6EVCjUXr09qjYOKUXnq01s-_3wCqE6vFb9vyZ28s9dEQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Alessandrini, Giovanni</creator><creator>Di Cristo, Michele</creator><creator>Morassi, Antonino</creator><creator>Rosset, Edi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</title><author>Alessandrini, Giovanni ; Di Cristo, Michele ; Morassi, Antonino ; Rosset, Edi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Boundaries</topic><topic>Constants</topic><topic>Elastic bodies</topic><topic>Inclusions</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessandrini, Giovanni</creatorcontrib><creatorcontrib>Di Cristo, Michele</creatorcontrib><creatorcontrib>Morassi, Antonino</creatorcontrib><creatorcontrib>Rosset, Edi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessandrini, Giovanni</au><au>Di Cristo, Michele</au><au>Morassi, Antonino</au><au>Rosset, Edi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>46</volume><issue>4</issue><spage>2692</spage><epage>2729</epage><pages>2692-2729</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.</abstract><doi>10.1137/130946307</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.2692-2729
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_miscellaneous_1629346136
source LOCUS - SIAM's Online Journal Archive
subjects Asymptotic properties
Boundaries
Constants
Elastic bodies
Inclusions
Inequalities
Mathematical analysis
Regularity
title Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Determination%20of%20an%20Inclusion%20in%20an%20Elastic%20Body%20by%20Boundary%20Measurements&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Alessandrini,%20Giovanni&rft.date=2014-01&rft.volume=46&rft.issue=4&rft.spage=2692&rft.epage=2729&rft.pages=2692-2729&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130946307&rft_dat=%3Cproquest_cross%3E1629346136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629346136&rft_id=info:pmid/&rfr_iscdi=true