Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements
We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding mater...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2014-01, Vol.46 (4), p.2692-2729 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2729 |
---|---|
container_issue | 4 |
container_start_page | 2692 |
container_title | SIAM journal on mathematical analysis |
container_volume | 46 |
creator | Alessandrini, Giovanni Di Cristo, Michele Morassi, Antonino Rosset, Edi |
description | We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features. |
doi_str_mv | 10.1137/130946307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629346136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629346136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKcP_oM86kP13iZNmkedUwcTBfW53KYJVNp0Ju3D_v02Jj4dPvg4HA5j1wh3iELfowAjlQB9wmYIpsg0FvKUzQCEylAinLOLlH4AUEkDM_bxOVLdOf7kRhf7NtDYDoEPnlPgq2C7KR24DQdedpTG1vLHodnyervPKTQUt_zNUZqi610Y0yU789Qld_WXc_b9vPxavGbr95fV4mGd2VzlY1YX6LUHT1qUjSMjSk8klLZosLSgtfEojaobDbmBsihMowhzyKVEkqYUc3Zz7N3E4Xdyaaz6NlnXdRTcMKUKVW6EVCjUXr09qjYOKUXnq01s-_3wCqE6vFb9vyZ28s9dEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629346136</pqid></control><display><type>article</type><title>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Alessandrini, Giovanni ; Di Cristo, Michele ; Morassi, Antonino ; Rosset, Edi</creator><creatorcontrib>Alessandrini, Giovanni ; Di Cristo, Michele ; Morassi, Antonino ; Rosset, Edi</creatorcontrib><description>We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130946307</identifier><language>eng</language><subject>Asymptotic properties ; Boundaries ; Constants ; Elastic bodies ; Inclusions ; Inequalities ; Mathematical analysis ; Regularity</subject><ispartof>SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.2692-2729</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</citedby><cites>FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids></links><search><creatorcontrib>Alessandrini, Giovanni</creatorcontrib><creatorcontrib>Di Cristo, Michele</creatorcontrib><creatorcontrib>Morassi, Antonino</creatorcontrib><creatorcontrib>Rosset, Edi</creatorcontrib><title>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</title><title>SIAM journal on mathematical analysis</title><description>We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.</description><subject>Asymptotic properties</subject><subject>Boundaries</subject><subject>Constants</subject><subject>Elastic bodies</subject><subject>Inclusions</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Regularity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKcP_oM86kP13iZNmkedUwcTBfW53KYJVNp0Ju3D_v02Jj4dPvg4HA5j1wh3iELfowAjlQB9wmYIpsg0FvKUzQCEylAinLOLlH4AUEkDM_bxOVLdOf7kRhf7NtDYDoEPnlPgq2C7KR24DQdedpTG1vLHodnyervPKTQUt_zNUZqi610Y0yU789Qld_WXc_b9vPxavGbr95fV4mGd2VzlY1YX6LUHT1qUjSMjSk8klLZosLSgtfEojaobDbmBsihMowhzyKVEkqYUc3Zz7N3E4Xdyaaz6NlnXdRTcMKUKVW6EVCjUXr09qjYOKUXnq01s-_3wCqE6vFb9vyZ28s9dEQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Alessandrini, Giovanni</creator><creator>Di Cristo, Michele</creator><creator>Morassi, Antonino</creator><creator>Rosset, Edi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</title><author>Alessandrini, Giovanni ; Di Cristo, Michele ; Morassi, Antonino ; Rosset, Edi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-b51f7f0fa738dea938faa367c1918c0779f1496bd702908559d6a1202441a4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Boundaries</topic><topic>Constants</topic><topic>Elastic bodies</topic><topic>Inclusions</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessandrini, Giovanni</creatorcontrib><creatorcontrib>Di Cristo, Michele</creatorcontrib><creatorcontrib>Morassi, Antonino</creatorcontrib><creatorcontrib>Rosset, Edi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessandrini, Giovanni</au><au>Di Cristo, Michele</au><au>Morassi, Antonino</au><au>Rosset, Edi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>46</volume><issue>4</issue><spage>2692</spage><epage>2729</epage><pages>2692-2729</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous, and isotropic material. The Lame moduli of the inclusion are constant and different from those of the surrounding material. Under mild a priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame system and a refined asymptotic analysis of the fundamental solution of the Lame system in presence of an inclusion which shows surprising features.</abstract><doi>10.1137/130946307</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.2692-2729 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629346136 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Asymptotic properties Boundaries Constants Elastic bodies Inclusions Inequalities Mathematical analysis Regularity |
title | Stable Determination of an Inclusion in an Elastic Body by Boundary Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Determination%20of%20an%20Inclusion%20in%20an%20Elastic%20Body%20by%20Boundary%20Measurements&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Alessandrini,%20Giovanni&rft.date=2014-01&rft.volume=46&rft.issue=4&rft.spage=2692&rft.epage=2729&rft.pages=2692-2729&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130946307&rft_dat=%3Cproquest_cross%3E1629346136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629346136&rft_id=info:pmid/&rfr_iscdi=true |