Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry
ABSTRACT The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolat...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2014-11, Vol.52 (22), p.1469-1475 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1475 |
---|---|
container_issue | 22 |
container_start_page | 1469 |
container_title | Journal of polymer science. Part B, Polymer physics |
container_volume | 52 |
creator | Remy, Roddel Weiss, Emily Daniels Nguyen, Ngoc A. Wei, Sujun Campos, Luis M. Kowalewski, Tomasz Mackay, Michael E. |
description | ABSTRACT
The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of
ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of
ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475
Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g. |
doi_str_mv | 10.1002/polb.23584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629345230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629345230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi0EEkNhwxNEQkgFKeX6J4m9pFVbkKYtSC2ztJzMNePi2sHOiObt8TClCxasbMnnO773I-Q1hSMKwD6M0fdHjDdSPCELCkrVIKR8ShYgZVe3rG2fkxc53wKUt0YtyNfTMG2MH-cq2spus4thdyue-ZDXG7yf_bRxcdxgwHdVP1drZy0mDJMzvsqDCcGF79VgfEzuDqc0vyTPrPEZXz2cB-Tm7PT65FO9vDr_fPJxWQ8CmKiZ5YPqe4VCWVhbQRujwK6ZlJb1AlUjsaVcNayXSjBpQEHf8LXitB-oaJEfkMO9d0zx5xbzpO9cHtB7EzBus6YtU1w0jENB3_yD3sZtCmW6QoFinMlOFur9nhpSzDmh1WNZyaRZU9C7dvWuXf2n3QK_fVCaUoK3yYTB5cdEWUMypXZf0z33y3mc_2PUX66Wx3_d9T7j8oT3jxmTfui2412jV5fn-qLjagVnK_2N_wbIfZf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609232878</pqid></control><display><type>article</type><title>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Remy, Roddel ; Weiss, Emily Daniels ; Nguyen, Ngoc A. ; Wei, Sujun ; Campos, Luis M. ; Kowalewski, Tomasz ; Mackay, Michael E.</creator><creatorcontrib>Remy, Roddel ; Weiss, Emily Daniels ; Nguyen, Ngoc A. ; Wei, Sujun ; Campos, Luis M. ; Kowalewski, Tomasz ; Mackay, Michael E.</creatorcontrib><description>ABSTRACT
The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of
ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of
ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475
Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.23584</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Chains ; conducting polymers ; conjugated polymers ; Crystallinity ; Crystallites ; crystallization ; Crystals ; Differential scanning calorimetry ; differential scanning calorimetry (DSC) ; Enthalpy ; enthalpy of fusion ; Exact sciences and technology ; Field effect transistors ; Grazing incidence ; Organic polymers ; organic solar cells ; organic transistors ; Physicochemistry of polymers ; poly(3-hexylthiophene) ; Properties and characterization ; TEM ; Thermal and thermodynamic properties ; thermal properties ; WAXS ; X-ray</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2014-11, Vol.52 (22), p.1469-1475</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</citedby><cites>FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.23584$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.23584$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28882990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Remy, Roddel</creatorcontrib><creatorcontrib>Weiss, Emily Daniels</creatorcontrib><creatorcontrib>Nguyen, Ngoc A.</creatorcontrib><creatorcontrib>Wei, Sujun</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Kowalewski, Tomasz</creatorcontrib><creatorcontrib>Mackay, Michael E.</creatorcontrib><title>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. Part B: Polym. Phys</addtitle><description>ABSTRACT
The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of
ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of
ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475
Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.</description><subject>Applied sciences</subject><subject>Chains</subject><subject>conducting polymers</subject><subject>conjugated polymers</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>crystallization</subject><subject>Crystals</subject><subject>Differential scanning calorimetry</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Enthalpy</subject><subject>enthalpy of fusion</subject><subject>Exact sciences and technology</subject><subject>Field effect transistors</subject><subject>Grazing incidence</subject><subject>Organic polymers</subject><subject>organic solar cells</subject><subject>organic transistors</subject><subject>Physicochemistry of polymers</subject><subject>poly(3-hexylthiophene)</subject><subject>Properties and characterization</subject><subject>TEM</subject><subject>Thermal and thermodynamic properties</subject><subject>thermal properties</subject><subject>WAXS</subject><subject>X-ray</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAURi0EEkNhwxNEQkgFKeX6J4m9pFVbkKYtSC2ztJzMNePi2sHOiObt8TClCxasbMnnO773I-Q1hSMKwD6M0fdHjDdSPCELCkrVIKR8ShYgZVe3rG2fkxc53wKUt0YtyNfTMG2MH-cq2spus4thdyue-ZDXG7yf_bRxcdxgwHdVP1drZy0mDJMzvsqDCcGF79VgfEzuDqc0vyTPrPEZXz2cB-Tm7PT65FO9vDr_fPJxWQ8CmKiZ5YPqe4VCWVhbQRujwK6ZlJb1AlUjsaVcNayXSjBpQEHf8LXitB-oaJEfkMO9d0zx5xbzpO9cHtB7EzBus6YtU1w0jENB3_yD3sZtCmW6QoFinMlOFur9nhpSzDmh1WNZyaRZU9C7dvWuXf2n3QK_fVCaUoK3yYTB5cdEWUMypXZf0z33y3mc_2PUX66Wx3_d9T7j8oT3jxmTfui2412jV5fn-qLjagVnK_2N_wbIfZf8</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Remy, Roddel</creator><creator>Weiss, Emily Daniels</creator><creator>Nguyen, Ngoc A.</creator><creator>Wei, Sujun</creator><creator>Campos, Luis M.</creator><creator>Kowalewski, Tomasz</creator><creator>Mackay, Michael E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141115</creationdate><title>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</title><author>Remy, Roddel ; Weiss, Emily Daniels ; Nguyen, Ngoc A. ; Wei, Sujun ; Campos, Luis M. ; Kowalewski, Tomasz ; Mackay, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Chains</topic><topic>conducting polymers</topic><topic>conjugated polymers</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>crystallization</topic><topic>Crystals</topic><topic>Differential scanning calorimetry</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Enthalpy</topic><topic>enthalpy of fusion</topic><topic>Exact sciences and technology</topic><topic>Field effect transistors</topic><topic>Grazing incidence</topic><topic>Organic polymers</topic><topic>organic solar cells</topic><topic>organic transistors</topic><topic>Physicochemistry of polymers</topic><topic>poly(3-hexylthiophene)</topic><topic>Properties and characterization</topic><topic>TEM</topic><topic>Thermal and thermodynamic properties</topic><topic>thermal properties</topic><topic>WAXS</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remy, Roddel</creatorcontrib><creatorcontrib>Weiss, Emily Daniels</creatorcontrib><creatorcontrib>Nguyen, Ngoc A.</creatorcontrib><creatorcontrib>Wei, Sujun</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Kowalewski, Tomasz</creatorcontrib><creatorcontrib>Mackay, Michael E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remy, Roddel</au><au>Weiss, Emily Daniels</au><au>Nguyen, Ngoc A.</au><au>Wei, Sujun</au><au>Campos, Luis M.</au><au>Kowalewski, Tomasz</au><au>Mackay, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. Part B: Polym. Phys</addtitle><date>2014-11-15</date><risdate>2014</risdate><volume>52</volume><issue>22</issue><spage>1469</spage><epage>1475</epage><pages>1469-1475</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>ABSTRACT
The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of
ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of
ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475
Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/polb.23584</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6266 |
ispartof | Journal of polymer science. Part B, Polymer physics, 2014-11, Vol.52 (22), p.1469-1475 |
issn | 0887-6266 1099-0488 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629345230 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Chains conducting polymers conjugated polymers Crystallinity Crystallites crystallization Crystals Differential scanning calorimetry differential scanning calorimetry (DSC) Enthalpy enthalpy of fusion Exact sciences and technology Field effect transistors Grazing incidence Organic polymers organic solar cells organic transistors Physicochemistry of polymers poly(3-hexylthiophene) Properties and characterization TEM Thermal and thermodynamic properties thermal properties WAXS X-ray |
title | Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enthalpy%20of%20fusion%20of%20poly(3-hexylthiophene)%20by%20differential%20scanning%20calorimetry&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Remy,%20Roddel&rft.date=2014-11-15&rft.volume=52&rft.issue=22&rft.spage=1469&rft.epage=1475&rft.pages=1469-1475&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.23584&rft_dat=%3Cproquest_cross%3E1629345230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609232878&rft_id=info:pmid/&rfr_iscdi=true |