Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry

ABSTRACT The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2014-11, Vol.52 (22), p.1469-1475
Hauptverfasser: Remy, Roddel, Weiss, Emily Daniels, Nguyen, Ngoc A., Wei, Sujun, Campos, Luis M., Kowalewski, Tomasz, Mackay, Michael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1475
container_issue 22
container_start_page 1469
container_title Journal of polymer science. Part B, Polymer physics
container_volume 52
creator Remy, Roddel
Weiss, Emily Daniels
Nguyen, Ngoc A.
Wei, Sujun
Campos, Luis M.
Kowalewski, Tomasz
Mackay, Michael E.
description ABSTRACT The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475 Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.
doi_str_mv 10.1002/polb.23584
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629345230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629345230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi0EEkNhwxNEQkgFKeX6J4m9pFVbkKYtSC2ztJzMNePi2sHOiObt8TClCxasbMnnO773I-Q1hSMKwD6M0fdHjDdSPCELCkrVIKR8ShYgZVe3rG2fkxc53wKUt0YtyNfTMG2MH-cq2spus4thdyue-ZDXG7yf_bRxcdxgwHdVP1drZy0mDJMzvsqDCcGF79VgfEzuDqc0vyTPrPEZXz2cB-Tm7PT65FO9vDr_fPJxWQ8CmKiZ5YPqe4VCWVhbQRujwK6ZlJb1AlUjsaVcNayXSjBpQEHf8LXitB-oaJEfkMO9d0zx5xbzpO9cHtB7EzBus6YtU1w0jENB3_yD3sZtCmW6QoFinMlOFur9nhpSzDmh1WNZyaRZU9C7dvWuXf2n3QK_fVCaUoK3yYTB5cdEWUMypXZf0z33y3mc_2PUX66Wx3_d9T7j8oT3jxmTfui2412jV5fn-qLjagVnK_2N_wbIfZf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609232878</pqid></control><display><type>article</type><title>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Remy, Roddel ; Weiss, Emily Daniels ; Nguyen, Ngoc A. ; Wei, Sujun ; Campos, Luis M. ; Kowalewski, Tomasz ; Mackay, Michael E.</creator><creatorcontrib>Remy, Roddel ; Weiss, Emily Daniels ; Nguyen, Ngoc A. ; Wei, Sujun ; Campos, Luis M. ; Kowalewski, Tomasz ; Mackay, Michael E.</creatorcontrib><description>ABSTRACT The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475 Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.23584</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Chains ; conducting polymers ; conjugated polymers ; Crystallinity ; Crystallites ; crystallization ; Crystals ; Differential scanning calorimetry ; differential scanning calorimetry (DSC) ; Enthalpy ; enthalpy of fusion ; Exact sciences and technology ; Field effect transistors ; Grazing incidence ; Organic polymers ; organic solar cells ; organic transistors ; Physicochemistry of polymers ; poly(3-hexylthiophene) ; Properties and characterization ; TEM ; Thermal and thermodynamic properties ; thermal properties ; WAXS ; X-ray</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2014-11, Vol.52 (22), p.1469-1475</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</citedby><cites>FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.23584$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.23584$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28882990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Remy, Roddel</creatorcontrib><creatorcontrib>Weiss, Emily Daniels</creatorcontrib><creatorcontrib>Nguyen, Ngoc A.</creatorcontrib><creatorcontrib>Wei, Sujun</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Kowalewski, Tomasz</creatorcontrib><creatorcontrib>Mackay, Michael E.</creatorcontrib><title>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. Part B: Polym. Phys</addtitle><description>ABSTRACT The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475 Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.</description><subject>Applied sciences</subject><subject>Chains</subject><subject>conducting polymers</subject><subject>conjugated polymers</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>crystallization</subject><subject>Crystals</subject><subject>Differential scanning calorimetry</subject><subject>differential scanning calorimetry (DSC)</subject><subject>Enthalpy</subject><subject>enthalpy of fusion</subject><subject>Exact sciences and technology</subject><subject>Field effect transistors</subject><subject>Grazing incidence</subject><subject>Organic polymers</subject><subject>organic solar cells</subject><subject>organic transistors</subject><subject>Physicochemistry of polymers</subject><subject>poly(3-hexylthiophene)</subject><subject>Properties and characterization</subject><subject>TEM</subject><subject>Thermal and thermodynamic properties</subject><subject>thermal properties</subject><subject>WAXS</subject><subject>X-ray</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAURi0EEkNhwxNEQkgFKeX6J4m9pFVbkKYtSC2ztJzMNePi2sHOiObt8TClCxasbMnnO773I-Q1hSMKwD6M0fdHjDdSPCELCkrVIKR8ShYgZVe3rG2fkxc53wKUt0YtyNfTMG2MH-cq2spus4thdyue-ZDXG7yf_bRxcdxgwHdVP1drZy0mDJMzvsqDCcGF79VgfEzuDqc0vyTPrPEZXz2cB-Tm7PT65FO9vDr_fPJxWQ8CmKiZ5YPqe4VCWVhbQRujwK6ZlJb1AlUjsaVcNayXSjBpQEHf8LXitB-oaJEfkMO9d0zx5xbzpO9cHtB7EzBus6YtU1w0jENB3_yD3sZtCmW6QoFinMlOFur9nhpSzDmh1WNZyaRZU9C7dvWuXf2n3QK_fVCaUoK3yYTB5cdEWUMypXZf0z33y3mc_2PUX66Wx3_d9T7j8oT3jxmTfui2412jV5fn-qLjagVnK_2N_wbIfZf8</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Remy, Roddel</creator><creator>Weiss, Emily Daniels</creator><creator>Nguyen, Ngoc A.</creator><creator>Wei, Sujun</creator><creator>Campos, Luis M.</creator><creator>Kowalewski, Tomasz</creator><creator>Mackay, Michael E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141115</creationdate><title>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</title><author>Remy, Roddel ; Weiss, Emily Daniels ; Nguyen, Ngoc A. ; Wei, Sujun ; Campos, Luis M. ; Kowalewski, Tomasz ; Mackay, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4024-2f3c9bb9e49f0df415a90fd288f2b4e958e613952b89428a090b53d931bc146e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Chains</topic><topic>conducting polymers</topic><topic>conjugated polymers</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>crystallization</topic><topic>Crystals</topic><topic>Differential scanning calorimetry</topic><topic>differential scanning calorimetry (DSC)</topic><topic>Enthalpy</topic><topic>enthalpy of fusion</topic><topic>Exact sciences and technology</topic><topic>Field effect transistors</topic><topic>Grazing incidence</topic><topic>Organic polymers</topic><topic>organic solar cells</topic><topic>organic transistors</topic><topic>Physicochemistry of polymers</topic><topic>poly(3-hexylthiophene)</topic><topic>Properties and characterization</topic><topic>TEM</topic><topic>Thermal and thermodynamic properties</topic><topic>thermal properties</topic><topic>WAXS</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remy, Roddel</creatorcontrib><creatorcontrib>Weiss, Emily Daniels</creatorcontrib><creatorcontrib>Nguyen, Ngoc A.</creatorcontrib><creatorcontrib>Wei, Sujun</creatorcontrib><creatorcontrib>Campos, Luis M.</creatorcontrib><creatorcontrib>Kowalewski, Tomasz</creatorcontrib><creatorcontrib>Mackay, Michael E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remy, Roddel</au><au>Weiss, Emily Daniels</au><au>Nguyen, Ngoc A.</au><au>Wei, Sujun</au><au>Campos, Luis M.</au><au>Kowalewski, Tomasz</au><au>Mackay, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. Part B: Polym. Phys</addtitle><date>2014-11-15</date><risdate>2014</risdate><volume>52</volume><issue>22</issue><spage>1469</spage><epage>1475</epage><pages>1469-1475</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>ABSTRACT The enthalpy of fusion for a perfect, infinite poly(3‐hexylthiophene) (P3HT) crystal (ΔHm∞) must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of ΔHm∞≈ 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X‐ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of ΔHm∞ allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1469–1475 Knowledge of the enthalpy of fusion for poly(3‐hexylthiophene) is important to determine its crystallinity after it is deposited or processed. Differential scanning calorimetry (DSC) of low molecular weight samples is demonstrated to be an effective technique to obtain it. Grazing incidence small angle scattering was employed to find a correction factor for the samples' amorphous content near the crystal edge and applied to the DSC data to improve the accuracy of the result, 42.9 ± 2.0 J/g.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/polb.23584</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2014-11, Vol.52 (22), p.1469-1475
issn 0887-6266
1099-0488
language eng
recordid cdi_proquest_miscellaneous_1629345230
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Chains
conducting polymers
conjugated polymers
Crystallinity
Crystallites
crystallization
Crystals
Differential scanning calorimetry
differential scanning calorimetry (DSC)
Enthalpy
enthalpy of fusion
Exact sciences and technology
Field effect transistors
Grazing incidence
Organic polymers
organic solar cells
organic transistors
Physicochemistry of polymers
poly(3-hexylthiophene)
Properties and characterization
TEM
Thermal and thermodynamic properties
thermal properties
WAXS
X-ray
title Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enthalpy%20of%20fusion%20of%20poly(3-hexylthiophene)%20by%20differential%20scanning%20calorimetry&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Remy,%20Roddel&rft.date=2014-11-15&rft.volume=52&rft.issue=22&rft.spage=1469&rft.epage=1475&rft.pages=1469-1475&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.23584&rft_dat=%3Cproquest_cross%3E1629345230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609232878&rft_id=info:pmid/&rfr_iscdi=true