Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells
In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion e...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2014-01, Vol.46 (4), p.3025-3049 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3049 |
---|---|
container_issue | 4 |
container_start_page | 3025 |
container_title | SIAM journal on mathematical analysis |
container_volume | 46 |
creator | Graf, Isabell Peter, Malte A. |
description | In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors. |
doi_str_mv | 10.1137/130921015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629344774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629344774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKcP_gd51IdqbtK0zeOsHxMGE3TPJc3HFumSmrQM_3srE-HCebi_ezj3IHQN5A6AlffAiKBAgJ-gGRDBsxJ4fopmhLAigxzIObpI6ZMQKHJBZujw6KwdkwseT_M-RiuVSVh6jYedwQ9h9FrGb_xmogvaKbzxNnTa-S1e9ybKIUR8cMNuusCLvu-cksOv2RBwLaNyPmyNN8kl7DxejvsJq03XpUt0ZmWXzNWfztHm-emjXmar9ctrvVhliopyyLgmOSW6qIBZRaFlqmx5VXAutKC0bKcVbSnVvBTGmkooW0FbkdYwWhlSCTZHN0ffPoav0aSh2bukpgTSmzCmBgoqWJ6XZT6ht0dUxZBSNLbpo9tPzzdAmt9ym_9y2Q8kF2wC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629344774</pqid></control><display><type>article</type><title>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Graf, Isabell ; Peter, Malte A.</creator><creatorcontrib>Graf, Isabell ; Peter, Malte A.</creatorcontrib><description>In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130921015</identifier><language>eng</language><subject>Boundaries ; Carcinogens ; Diffusion ; Endoplasmic reticulum ; Homogenizing ; Manifolds ; Mathematical models ; Operators</subject><ispartof>SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.3025-3049</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</citedby><cites>FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Graf, Isabell</creatorcontrib><creatorcontrib>Peter, Malte A.</creatorcontrib><title>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</title><title>SIAM journal on mathematical analysis</title><description>In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.</description><subject>Boundaries</subject><subject>Carcinogens</subject><subject>Diffusion</subject><subject>Endoplasmic reticulum</subject><subject>Homogenizing</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Operators</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOKcP_gd51IdqbtK0zeOsHxMGE3TPJc3HFumSmrQM_3srE-HCebi_ezj3IHQN5A6AlffAiKBAgJ-gGRDBsxJ4fopmhLAigxzIObpI6ZMQKHJBZujw6KwdkwseT_M-RiuVSVh6jYedwQ9h9FrGb_xmogvaKbzxNnTa-S1e9ybKIUR8cMNuusCLvu-cksOv2RBwLaNyPmyNN8kl7DxejvsJq03XpUt0ZmWXzNWfztHm-emjXmar9ctrvVhliopyyLgmOSW6qIBZRaFlqmx5VXAutKC0bKcVbSnVvBTGmkooW0FbkdYwWhlSCTZHN0ffPoav0aSh2bukpgTSmzCmBgoqWJ6XZT6ht0dUxZBSNLbpo9tPzzdAmt9ym_9y2Q8kF2wC</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Graf, Isabell</creator><creator>Peter, Malte A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</title><author>Graf, Isabell ; Peter, Malte A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Carcinogens</topic><topic>Diffusion</topic><topic>Endoplasmic reticulum</topic><topic>Homogenizing</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graf, Isabell</creatorcontrib><creatorcontrib>Peter, Malte A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graf, Isabell</au><au>Peter, Malte A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>46</volume><issue>4</issue><spage>3025</spage><epage>3049</epage><pages>3025-3049</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.</abstract><doi>10.1137/130921015</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.3025-3049 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_miscellaneous_1629344774 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Boundaries Carcinogens Diffusion Endoplasmic reticulum Homogenizing Manifolds Mathematical models Operators |
title | Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20on%20Surfaces%20and%20the%20Boundary%20Periodic%20Unfolding%20Operator%20with%20an%20Application%20to%20Carcinogenesis%20in%20Human%20Cells&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Graf,%20Isabell&rft.date=2014-01&rft.volume=46&rft.issue=4&rft.spage=3025&rft.epage=3049&rft.pages=3025-3049&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130921015&rft_dat=%3Cproquest_cross%3E1629344774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629344774&rft_id=info:pmid/&rfr_iscdi=true |