Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells

In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2014-01, Vol.46 (4), p.3025-3049
Hauptverfasser: Graf, Isabell, Peter, Malte A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3049
container_issue 4
container_start_page 3025
container_title SIAM journal on mathematical analysis
container_volume 46
creator Graf, Isabell
Peter, Malte A.
description In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.
doi_str_mv 10.1137/130921015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629344774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629344774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKcP_gd51IdqbtK0zeOsHxMGE3TPJc3HFumSmrQM_3srE-HCebi_ezj3IHQN5A6AlffAiKBAgJ-gGRDBsxJ4fopmhLAigxzIObpI6ZMQKHJBZujw6KwdkwseT_M-RiuVSVh6jYedwQ9h9FrGb_xmogvaKbzxNnTa-S1e9ybKIUR8cMNuusCLvu-cksOv2RBwLaNyPmyNN8kl7DxejvsJq03XpUt0ZmWXzNWfztHm-emjXmar9ctrvVhliopyyLgmOSW6qIBZRaFlqmx5VXAutKC0bKcVbSnVvBTGmkooW0FbkdYwWhlSCTZHN0ffPoav0aSh2bukpgTSmzCmBgoqWJ6XZT6ht0dUxZBSNLbpo9tPzzdAmt9ym_9y2Q8kF2wC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629344774</pqid></control><display><type>article</type><title>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Graf, Isabell ; Peter, Malte A.</creator><creatorcontrib>Graf, Isabell ; Peter, Malte A.</creatorcontrib><description>In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130921015</identifier><language>eng</language><subject>Boundaries ; Carcinogens ; Diffusion ; Endoplasmic reticulum ; Homogenizing ; Manifolds ; Mathematical models ; Operators</subject><ispartof>SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.3025-3049</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</citedby><cites>FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Graf, Isabell</creatorcontrib><creatorcontrib>Peter, Malte A.</creatorcontrib><title>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</title><title>SIAM journal on mathematical analysis</title><description>In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.</description><subject>Boundaries</subject><subject>Carcinogens</subject><subject>Diffusion</subject><subject>Endoplasmic reticulum</subject><subject>Homogenizing</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Operators</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOKcP_gd51IdqbtK0zeOsHxMGE3TPJc3HFumSmrQM_3srE-HCebi_ezj3IHQN5A6AlffAiKBAgJ-gGRDBsxJ4fopmhLAigxzIObpI6ZMQKHJBZujw6KwdkwseT_M-RiuVSVh6jYedwQ9h9FrGb_xmogvaKbzxNnTa-S1e9ybKIUR8cMNuusCLvu-cksOv2RBwLaNyPmyNN8kl7DxejvsJq03XpUt0ZmWXzNWfztHm-emjXmar9ctrvVhliopyyLgmOSW6qIBZRaFlqmx5VXAutKC0bKcVbSnVvBTGmkooW0FbkdYwWhlSCTZHN0ffPoav0aSh2bukpgTSmzCmBgoqWJ6XZT6ht0dUxZBSNLbpo9tPzzdAmt9ym_9y2Q8kF2wC</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Graf, Isabell</creator><creator>Peter, Malte A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</title><author>Graf, Isabell ; Peter, Malte A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-5d0420d6813fc21b3c7b586559d9227b0d62b22d579efe89cf81b80be328e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Carcinogens</topic><topic>Diffusion</topic><topic>Endoplasmic reticulum</topic><topic>Homogenizing</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graf, Isabell</creatorcontrib><creatorcontrib>Peter, Malte A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graf, Isabell</au><au>Peter, Malte A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2014-01</date><risdate>2014</risdate><volume>46</volume><issue>4</issue><spage>3025</spage><epage>3049</epage><pages>3025-3049</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In the context of periodic homogenization based on the periodic unfolding method, we extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These general results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which are defined on a manifold. The system describes the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace--Beltrami operator. The binding process to the surface of the endoplasmic reticulum is modeled in a nonlinear way taking into account the number of free receptors.</abstract><doi>10.1137/130921015</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2014-01, Vol.46 (4), p.3025-3049
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_miscellaneous_1629344774
source LOCUS - SIAM's Online Journal Archive
subjects Boundaries
Carcinogens
Diffusion
Endoplasmic reticulum
Homogenizing
Manifolds
Mathematical models
Operators
title Diffusion on Surfaces and the Boundary Periodic Unfolding Operator with an Application to Carcinogenesis in Human Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20on%20Surfaces%20and%20the%20Boundary%20Periodic%20Unfolding%20Operator%20with%20an%20Application%20to%20Carcinogenesis%20in%20Human%20Cells&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Graf,%20Isabell&rft.date=2014-01&rft.volume=46&rft.issue=4&rft.spage=3025&rft.epage=3049&rft.pages=3025-3049&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130921015&rft_dat=%3Cproquest_cross%3E1629344774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629344774&rft_id=info:pmid/&rfr_iscdi=true