Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method
Amorphous (a-LATP) powders with various nominal compositions of Li1+xAlxTi2−x(PO4)3 (x = 0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6) in the Li2O-Al2O3-TiO2-P2O5 (LATP) system, were prepared directly from a mixture of Li2O, γ-Al2O3, anatase-type TiO2, and P2O5 as the starting powder, using mechanical milling...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2014/10/05, Vol.82(10), pp.870-874 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 874 |
---|---|
container_issue | 10 |
container_start_page | 870 |
container_title | Denki kagaku oyobi kōgyō butsuri kagaku |
container_volume | 82 |
creator | MORIMOTO, Hideyuki HIRUKAWA, Masatoshi MATSUMOTO, Atsuyuki KURAHAYASHI, Takashi ITO, Nobukiyo TOBISHIMA, Shin-ichi |
description | Amorphous (a-LATP) powders with various nominal compositions of Li1+xAlxTi2−x(PO4)3 (x = 0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6) in the Li2O-Al2O3-TiO2-P2O5 (LATP) system, were prepared directly from a mixture of Li2O, γ-Al2O3, anatase-type TiO2, and P2O5 as the starting powder, using mechanical milling (MM) at room temperature. Crystalline LATP (c-LATP) powder with a NASICON-type structure was formed by the heat treatment of mechanochemically prepared a-LATP powder. In addition, heat-treated c-LATP (x = 0.5, 0.6) powders included an impurity phase of crystalline Li5AlO4. The sintered c-LATP (x = 0) pellet without Al3+ doping exhibited a low electrical conductivity on the order of 10−7 S cm−1 at room temperature. On the other hand, the sintered Al3+-doped c-LATP (x = 0.3, 0.4, 0.45, and 0.5) pellets showed high electrical conductivities on the order of 10−4 S cm−1 at room temperature. The sintered c-LATP (x = 0.45) pellet exhibited the highest lithium ion conductivity (2.9 × 10−4 S m−1) at 25°C and the lowest activation energy (30 kJ mol−1). |
doi_str_mv | 10.5796/electrochemistry.82.870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629344458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629344458</sourcerecordid><originalsourceid>FETCH-LOGICAL-j262t-b1b81df87fb1af24ac9c66a2167e21327dac7f5d3c0832c94da62477a0244bcc3</originalsourceid><addsrcrecordid>eNpdkd1q2zAYhsVYYaHtNUywk47hVH-W5cMQsi2QNS1tj4UiybWCbHmyvCV3sNPuEnclE83YQU8-8YlH4uF9AXiP0bysan5tvdUpBt3azo0pHueCzEWF3oAZwYIXhJX4LZhhylhBS0begctx3COEMKp5TeoZeN641Lqpg-vQw2XozaST--GSsyMMDbxZ3K-X25siHQcLNw5_Oiz84cGRP79-H65ut-wjhffBOwNXJxF_TPnhbbSDitbAJoYOLroQhzZM-T78NDbCx9H1T1DBb1a3qj_Ja-XzntpgLsBZo_xoL_-d5-Dx8-ph-bXYbL-sl4tNsSecpGKHdwKbRlTNDquGMKVrzbkimFeWYEoqo3TVlIZqJCjRNTOKE1ZVChHGdlrTc3B1-neI4ftkxyRzhNp6r3qbZSXmpM65sVJk9MMrdB-m2Gc7iUvBEadZKVN3J2o_JvVk5RBdp-JRqpic9la-7koKIjF6mUyucimU_mdzMFHanv4FooyZPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1586063262</pqid></control><display><type>article</type><title>Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MORIMOTO, Hideyuki ; HIRUKAWA, Masatoshi ; MATSUMOTO, Atsuyuki ; KURAHAYASHI, Takashi ; ITO, Nobukiyo ; TOBISHIMA, Shin-ichi</creator><creatorcontrib>MORIMOTO, Hideyuki ; HIRUKAWA, Masatoshi ; MATSUMOTO, Atsuyuki ; KURAHAYASHI, Takashi ; ITO, Nobukiyo ; TOBISHIMA, Shin-ichi</creatorcontrib><description>Amorphous (a-LATP) powders with various nominal compositions of Li1+xAlxTi2−x(PO4)3 (x = 0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6) in the Li2O-Al2O3-TiO2-P2O5 (LATP) system, were prepared directly from a mixture of Li2O, γ-Al2O3, anatase-type TiO2, and P2O5 as the starting powder, using mechanical milling (MM) at room temperature. Crystalline LATP (c-LATP) powder with a NASICON-type structure was formed by the heat treatment of mechanochemically prepared a-LATP powder. In addition, heat-treated c-LATP (x = 0.5, 0.6) powders included an impurity phase of crystalline Li5AlO4. The sintered c-LATP (x = 0) pellet without Al3+ doping exhibited a low electrical conductivity on the order of 10−7 S cm−1 at room temperature. On the other hand, the sintered Al3+-doped c-LATP (x = 0.3, 0.4, 0.45, and 0.5) pellets showed high electrical conductivities on the order of 10−4 S cm−1 at room temperature. The sintered c-LATP (x = 0.45) pellet exhibited the highest lithium ion conductivity (2.9 × 10−4 S m−1) at 25°C and the lowest activation energy (30 kJ mol−1).</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.82.870</identifier><language>eng ; jpn</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Crystal structure ; Electrical resistivity ; Heat treatment ; Lithium ; Lithium Ion Conductivity ; Mechanical Milling ; NASICON-type Structure ; Pellets ; Resistivity ; Sintering ; Solid Electrolyte ; Titanium dioxide</subject><ispartof>Electrochemistry, 2014/10/05, Vol.82(10), pp.870-874</ispartof><rights>2014 The Electrochemical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>MORIMOTO, Hideyuki</creatorcontrib><creatorcontrib>HIRUKAWA, Masatoshi</creatorcontrib><creatorcontrib>MATSUMOTO, Atsuyuki</creatorcontrib><creatorcontrib>KURAHAYASHI, Takashi</creatorcontrib><creatorcontrib>ITO, Nobukiyo</creatorcontrib><creatorcontrib>TOBISHIMA, Shin-ichi</creatorcontrib><title>Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Amorphous (a-LATP) powders with various nominal compositions of Li1+xAlxTi2−x(PO4)3 (x = 0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6) in the Li2O-Al2O3-TiO2-P2O5 (LATP) system, were prepared directly from a mixture of Li2O, γ-Al2O3, anatase-type TiO2, and P2O5 as the starting powder, using mechanical milling (MM) at room temperature. Crystalline LATP (c-LATP) powder with a NASICON-type structure was formed by the heat treatment of mechanochemically prepared a-LATP powder. In addition, heat-treated c-LATP (x = 0.5, 0.6) powders included an impurity phase of crystalline Li5AlO4. The sintered c-LATP (x = 0) pellet without Al3+ doping exhibited a low electrical conductivity on the order of 10−7 S cm−1 at room temperature. On the other hand, the sintered Al3+-doped c-LATP (x = 0.3, 0.4, 0.45, and 0.5) pellets showed high electrical conductivities on the order of 10−4 S cm−1 at room temperature. The sintered c-LATP (x = 0.45) pellet exhibited the highest lithium ion conductivity (2.9 × 10−4 S m−1) at 25°C and the lowest activation energy (30 kJ mol−1).</description><subject>Crystal structure</subject><subject>Electrical resistivity</subject><subject>Heat treatment</subject><subject>Lithium</subject><subject>Lithium Ion Conductivity</subject><subject>Mechanical Milling</subject><subject>NASICON-type Structure</subject><subject>Pellets</subject><subject>Resistivity</subject><subject>Sintering</subject><subject>Solid Electrolyte</subject><subject>Titanium dioxide</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkd1q2zAYhsVYYaHtNUywk47hVH-W5cMQsi2QNS1tj4UiybWCbHmyvCV3sNPuEnclE83YQU8-8YlH4uF9AXiP0bysan5tvdUpBt3azo0pHueCzEWF3oAZwYIXhJX4LZhhylhBS0begctx3COEMKp5TeoZeN641Lqpg-vQw2XozaST--GSsyMMDbxZ3K-X25siHQcLNw5_Oiz84cGRP79-H65ut-wjhffBOwNXJxF_TPnhbbSDitbAJoYOLroQhzZM-T78NDbCx9H1T1DBb1a3qj_Ja-XzntpgLsBZo_xoL_-d5-Dx8-ph-bXYbL-sl4tNsSecpGKHdwKbRlTNDquGMKVrzbkimFeWYEoqo3TVlIZqJCjRNTOKE1ZVChHGdlrTc3B1-neI4ftkxyRzhNp6r3qbZSXmpM65sVJk9MMrdB-m2Gc7iUvBEadZKVN3J2o_JvVk5RBdp-JRqpic9la-7koKIjF6mUyucimU_mdzMFHanv4FooyZPw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>MORIMOTO, Hideyuki</creator><creator>HIRUKAWA, Masatoshi</creator><creator>MATSUMOTO, Atsuyuki</creator><creator>KURAHAYASHI, Takashi</creator><creator>ITO, Nobukiyo</creator><creator>TOBISHIMA, Shin-ichi</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>2014</creationdate><title>Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method</title><author>MORIMOTO, Hideyuki ; HIRUKAWA, Masatoshi ; MATSUMOTO, Atsuyuki ; KURAHAYASHI, Takashi ; ITO, Nobukiyo ; TOBISHIMA, Shin-ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j262t-b1b81df87fb1af24ac9c66a2167e21327dac7f5d3c0832c94da62477a0244bcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2014</creationdate><topic>Crystal structure</topic><topic>Electrical resistivity</topic><topic>Heat treatment</topic><topic>Lithium</topic><topic>Lithium Ion Conductivity</topic><topic>Mechanical Milling</topic><topic>NASICON-type Structure</topic><topic>Pellets</topic><topic>Resistivity</topic><topic>Sintering</topic><topic>Solid Electrolyte</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MORIMOTO, Hideyuki</creatorcontrib><creatorcontrib>HIRUKAWA, Masatoshi</creatorcontrib><creatorcontrib>MATSUMOTO, Atsuyuki</creatorcontrib><creatorcontrib>KURAHAYASHI, Takashi</creatorcontrib><creatorcontrib>ITO, Nobukiyo</creatorcontrib><creatorcontrib>TOBISHIMA, Shin-ichi</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MORIMOTO, Hideyuki</au><au>HIRUKAWA, Masatoshi</au><au>MATSUMOTO, Atsuyuki</au><au>KURAHAYASHI, Takashi</au><au>ITO, Nobukiyo</au><au>TOBISHIMA, Shin-ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2014</date><risdate>2014</risdate><volume>82</volume><issue>10</issue><spage>870</spage><epage>874</epage><pages>870-874</pages><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Amorphous (a-LATP) powders with various nominal compositions of Li1+xAlxTi2−x(PO4)3 (x = 0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6) in the Li2O-Al2O3-TiO2-P2O5 (LATP) system, were prepared directly from a mixture of Li2O, γ-Al2O3, anatase-type TiO2, and P2O5 as the starting powder, using mechanical milling (MM) at room temperature. Crystalline LATP (c-LATP) powder with a NASICON-type structure was formed by the heat treatment of mechanochemically prepared a-LATP powder. In addition, heat-treated c-LATP (x = 0.5, 0.6) powders included an impurity phase of crystalline Li5AlO4. The sintered c-LATP (x = 0) pellet without Al3+ doping exhibited a low electrical conductivity on the order of 10−7 S cm−1 at room temperature. On the other hand, the sintered Al3+-doped c-LATP (x = 0.3, 0.4, 0.45, and 0.5) pellets showed high electrical conductivities on the order of 10−4 S cm−1 at room temperature. The sintered c-LATP (x = 0.45) pellet exhibited the highest lithium ion conductivity (2.9 × 10−4 S m−1) at 25°C and the lowest activation energy (30 kJ mol−1).</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.82.870</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3542 |
ispartof | Electrochemistry, 2014/10/05, Vol.82(10), pp.870-874 |
issn | 1344-3542 2186-2451 |
language | eng ; jpn |
recordid | cdi_proquest_miscellaneous_1629344458 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Crystal structure Electrical resistivity Heat treatment Lithium Lithium Ion Conductivity Mechanical Milling NASICON-type Structure Pellets Resistivity Sintering Solid Electrolyte Titanium dioxide |
title | Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2−x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Ion%20Conductivities%20of%20NASICON-type%20Li1+xAlxTi2%E2%88%92x(PO4)3%20Solid%20Electrolytes%20Prepared%20from%20Amorphous%20Powder%20Using%20a%20Mechanochemical%20Method&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=MORIMOTO,%20Hideyuki&rft.date=2014&rft.volume=82&rft.issue=10&rft.spage=870&rft.epage=874&rft.pages=870-874&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.82.870&rft_dat=%3Cproquest_jstag%3E1629344458%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1586063262&rft_id=info:pmid/&rfr_iscdi=true |