CALIBRATION OF THE UNI-VARIATE COX–INGERSOLL–ROSS MODEL AND PARAMETERS SELECTION THROUGH THE KULLBACK–LEIBLER DIVERGENCE

This paper proposes a new estimation algorithm for the uni-variate Cox–Ingersoll–Ross (CIR) model in the state-space framework. The selection criterion among parameters is the likelihood but some parameters may have the same value; thus the initialization of the optimization routine is important esp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical and applied finance 2014-09, Vol.17 (6), p.1450038-1450038
Hauptverfasser: DANG-NGUYEN, STEPHANE, LE CAILLEC, JEAN-MARC, HILLION, ALAIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1450038
container_issue 6
container_start_page 1450038
container_title International journal of theoretical and applied finance
container_volume 17
creator DANG-NGUYEN, STEPHANE
LE CAILLEC, JEAN-MARC
HILLION, ALAIN
description This paper proposes a new estimation algorithm for the uni-variate Cox–Ingersoll–Ross (CIR) model in the state-space framework. The selection criterion among parameters is the likelihood but some parameters may have the same value; thus the initialization of the optimization routine is important especially if deterministic solvers are used. The algorithm aims at combining likelihood and two additional criteria based on the Kullback–Leibler divergence in order to find initial values in a grid search. The likelihood is then optimized in a restricted parameter set. A numerical experiment consists of generating data given a parameter set varying the length of the time series and the observation noise and then estimating the parameters with the algorithm. The results are discussed showing different performance levels for each parameter.
doi_str_mv 10.1142/S0219024914500381
format Article
fullrecord <record><control><sourceid>proquest_world</sourceid><recordid>TN_cdi_proquest_miscellaneous_1629336065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629336065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3191-1ab31837f485b05627a12dd09ef7655f2fc5c8d588a9b79e2909598d9bdb72bf3</originalsourceid><addsrcrecordid>eNplkMtKw0AYhQdRsNQ-gLtZuonOJZNklmk6JqHTRHIp7kKuEEibmmkRN-I7-IY-iWkrbrr6D5zzHX4OAPcYPWKsk6cYEcwR0TnWGULUwldggk1ONYMScg0mR1s7-rdgplRbIMwNyohBJ-DTsaU_j-zEDwMYPsPEEzANfG1tR76dCOiErz9f337giigOpRx1FMYxXIULIaEdLOCLHdkrkYw2jIUUzqko8aIwdb1T2zKVcm47yxGVwp9LEcGFvxaRKwJH3IGbJu9UPfu7U5A-i8TxNBm6_viaVlLMsYbzgmKLmo1usQIxg5g5JlWFeN2YBmMNaUpWWhWzrJwXJq8JR5xxq-JFVZikaOgUPJx7d0P_dqjVPtu0qqy7Lt_W_UFl2CCcUgMZbIzic7QceqWGusl2Q7vJh48Mo-w4d3Yx98igM_PeD12lyrbe7tumLf_RS-QXSQ56Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629336065</pqid></control><display><type>article</type><title>CALIBRATION OF THE UNI-VARIATE COX–INGERSOLL–ROSS MODEL AND PARAMETERS SELECTION THROUGH THE KULLBACK–LEIBLER DIVERGENCE</title><source>World Scientific Journals (Tsinghua Mirror)</source><source>World Scientific Journals</source><creator>DANG-NGUYEN, STEPHANE ; LE CAILLEC, JEAN-MARC ; HILLION, ALAIN</creator><creatorcontrib>DANG-NGUYEN, STEPHANE ; LE CAILLEC, JEAN-MARC ; HILLION, ALAIN</creatorcontrib><description>This paper proposes a new estimation algorithm for the uni-variate Cox–Ingersoll–Ross (CIR) model in the state-space framework. The selection criterion among parameters is the likelihood but some parameters may have the same value; thus the initialization of the optimization routine is important especially if deterministic solvers are used. The algorithm aims at combining likelihood and two additional criteria based on the Kullback–Leibler divergence in order to find initial values in a grid search. The likelihood is then optimized in a restricted parameter set. A numerical experiment consists of generating data given a parameter set varying the length of the time series and the observation noise and then estimating the parameters with the algorithm. The results are discussed showing different performance levels for each parameter.</description><identifier>ISSN: 0219-0249</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S0219024914500381</identifier><language>eng</language><publisher>World Scientific Publishing Company</publisher><subject>Algorithms ; Divergence ; Estimation ; Probability ; Value</subject><ispartof>International journal of theoretical and applied finance, 2014-09, Vol.17 (6), p.1450038-1450038</ispartof><rights>2014, World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3191-1ab31837f485b05627a12dd09ef7655f2fc5c8d588a9b79e2909598d9bdb72bf3</citedby><cites>FETCH-LOGICAL-c3191-1ab31837f485b05627a12dd09ef7655f2fc5c8d588a9b79e2909598d9bdb72bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0219024914500381$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,776,780,3200,3207,4859,4860,27901,27902,55550,55562</link.rule.ids></links><search><creatorcontrib>DANG-NGUYEN, STEPHANE</creatorcontrib><creatorcontrib>LE CAILLEC, JEAN-MARC</creatorcontrib><creatorcontrib>HILLION, ALAIN</creatorcontrib><title>CALIBRATION OF THE UNI-VARIATE COX–INGERSOLL–ROSS MODEL AND PARAMETERS SELECTION THROUGH THE KULLBACK–LEIBLER DIVERGENCE</title><title>International journal of theoretical and applied finance</title><description>This paper proposes a new estimation algorithm for the uni-variate Cox–Ingersoll–Ross (CIR) model in the state-space framework. The selection criterion among parameters is the likelihood but some parameters may have the same value; thus the initialization of the optimization routine is important especially if deterministic solvers are used. The algorithm aims at combining likelihood and two additional criteria based on the Kullback–Leibler divergence in order to find initial values in a grid search. The likelihood is then optimized in a restricted parameter set. A numerical experiment consists of generating data given a parameter set varying the length of the time series and the observation noise and then estimating the parameters with the algorithm. The results are discussed showing different performance levels for each parameter.</description><subject>Algorithms</subject><subject>Divergence</subject><subject>Estimation</subject><subject>Probability</subject><subject>Value</subject><issn>0219-0249</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNplkMtKw0AYhQdRsNQ-gLtZuonOJZNklmk6JqHTRHIp7kKuEEibmmkRN-I7-IY-iWkrbrr6D5zzHX4OAPcYPWKsk6cYEcwR0TnWGULUwldggk1ONYMScg0mR1s7-rdgplRbIMwNyohBJ-DTsaU_j-zEDwMYPsPEEzANfG1tR76dCOiErz9f337giigOpRx1FMYxXIULIaEdLOCLHdkrkYw2jIUUzqko8aIwdb1T2zKVcm47yxGVwp9LEcGFvxaRKwJH3IGbJu9UPfu7U5A-i8TxNBm6_viaVlLMsYbzgmKLmo1usQIxg5g5JlWFeN2YBmMNaUpWWhWzrJwXJq8JR5xxq-JFVZikaOgUPJx7d0P_dqjVPtu0qqy7Lt_W_UFl2CCcUgMZbIzic7QceqWGusl2Q7vJh48Mo-w4d3Yx98igM_PeD12lyrbe7tumLf_RS-QXSQ56Qw</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>DANG-NGUYEN, STEPHANE</creator><creator>LE CAILLEC, JEAN-MARC</creator><creator>HILLION, ALAIN</creator><general>World Scientific Publishing Company</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201409</creationdate><title>CALIBRATION OF THE UNI-VARIATE COX–INGERSOLL–ROSS MODEL AND PARAMETERS SELECTION THROUGH THE KULLBACK–LEIBLER DIVERGENCE</title><author>DANG-NGUYEN, STEPHANE ; LE CAILLEC, JEAN-MARC ; HILLION, ALAIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3191-1ab31837f485b05627a12dd09ef7655f2fc5c8d588a9b79e2909598d9bdb72bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Divergence</topic><topic>Estimation</topic><topic>Probability</topic><topic>Value</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DANG-NGUYEN, STEPHANE</creatorcontrib><creatorcontrib>LE CAILLEC, JEAN-MARC</creatorcontrib><creatorcontrib>HILLION, ALAIN</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International journal of theoretical and applied finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DANG-NGUYEN, STEPHANE</au><au>LE CAILLEC, JEAN-MARC</au><au>HILLION, ALAIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CALIBRATION OF THE UNI-VARIATE COX–INGERSOLL–ROSS MODEL AND PARAMETERS SELECTION THROUGH THE KULLBACK–LEIBLER DIVERGENCE</atitle><jtitle>International journal of theoretical and applied finance</jtitle><date>2014-09</date><risdate>2014</risdate><volume>17</volume><issue>6</issue><spage>1450038</spage><epage>1450038</epage><pages>1450038-1450038</pages><issn>0219-0249</issn><eissn>1793-6322</eissn><abstract>This paper proposes a new estimation algorithm for the uni-variate Cox–Ingersoll–Ross (CIR) model in the state-space framework. The selection criterion among parameters is the likelihood but some parameters may have the same value; thus the initialization of the optimization routine is important especially if deterministic solvers are used. The algorithm aims at combining likelihood and two additional criteria based on the Kullback–Leibler divergence in order to find initial values in a grid search. The likelihood is then optimized in a restricted parameter set. A numerical experiment consists of generating data given a parameter set varying the length of the time series and the observation noise and then estimating the parameters with the algorithm. The results are discussed showing different performance levels for each parameter.</abstract><pub>World Scientific Publishing Company</pub><doi>10.1142/S0219024914500381</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0219-0249
ispartof International journal of theoretical and applied finance, 2014-09, Vol.17 (6), p.1450038-1450038
issn 0219-0249
1793-6322
language eng
recordid cdi_proquest_miscellaneous_1629336065
source World Scientific Journals (Tsinghua Mirror); World Scientific Journals
subjects Algorithms
Divergence
Estimation
Probability
Value
title CALIBRATION OF THE UNI-VARIATE COX–INGERSOLL–ROSS MODEL AND PARAMETERS SELECTION THROUGH THE KULLBACK–LEIBLER DIVERGENCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_world&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CALIBRATION%20OF%20THE%20UNI-VARIATE%20COX%E2%80%93INGERSOLL%E2%80%93ROSS%20MODEL%20AND%20PARAMETERS%20SELECTION%20THROUGH%20THE%20KULLBACK%E2%80%93LEIBLER%20DIVERGENCE&rft.jtitle=International%20journal%20of%20theoretical%20and%20applied%20finance&rft.au=DANG-NGUYEN,%20STEPHANE&rft.date=2014-09&rft.volume=17&rft.issue=6&rft.spage=1450038&rft.epage=1450038&rft.pages=1450038-1450038&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S0219024914500381&rft_dat=%3Cproquest_world%3E1629336065%3C/proquest_world%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629336065&rft_id=info:pmid/&rfr_iscdi=true