Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms
The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2015, Vol.205 (1), p.192-201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 192 |
container_title | The New phytologist |
container_volume | 205 |
creator | Kranz, Sven A Young, Jodi N Hopkinson, Brian M Goldman, Johanna A. L Tortell, Philippe D Morel, François M. M |
description | The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures. |
doi_str_mv | 10.1111/nph.12976 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1628878975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.205.1.192</jstor_id><sourcerecordid>newphytologist.205.1.192</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4046-e9cad65a025f3b174351fbec8586b9698ff0cc495156faf7c4c56b83540217503</originalsourceid><addsrcrecordid>eNp9kcFvFCEUxonR2G314D-gk3jpZVpgBgaOZlOtycaaaBNvyLCPXTYzMAUmm_3vpbu1Bw9ygbz3-14-vofQO4KvSDnXftpeESo7_gItSMtlLUjTvUQLjKmoect_naHzlHYYY8k4fY3OKGuwELJboN-rsK8yjBNEnecIVYT1bCBVeQsVeIgbyM6U6sPsIozgc2VDPHaXd7QywZtSK1rnN9UIZqu9S2PlfLV2OocxvUGvrB4SvH26L9D955ufy9t6dffl6_LTqrYtbnkN0ug1ZxpTZpuedG3DiO3BCCZ4L7kU1mJjWskI41bbzrSG8V40rMWUdAw3F-jyNHeK4WGGlNXokoFh0B7CnBThVIiu_JkV9OM_6C7M0Rd3ijLSlGAYpv-jyqxOCi7kI_X-iZr7EdZqim7U8aD-JlyA6xOwdwMcnvsEq8fVqbI6dVyd-vb99vgoivqk2KUc4rPCw37aHnIYwsYVMxQzRRQ5Wvhw4q0OSm-iS-r-B8WEYUxEV9Jp_gCp86Od</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627986892</pqid></control><display><type>article</type><title>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles</source><source>MEDLINE</source><source>IngentaConnect Open Access</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Kranz, Sven A ; Young, Jodi N ; Hopkinson, Brian M ; Goldman, Johanna A. L ; Tortell, Philippe D ; Morel, François M. M</creator><creatorcontrib>Kranz, Sven A ; Young, Jodi N ; Hopkinson, Brian M ; Goldman, Johanna A. L ; Tortell, Philippe D ; Morel, François M. M</creatorcontrib><description>The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12976</identifier><identifier>PMID: 25308897</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Antarctic Regions ; Bacillariophyceae ; bicarbonates ; Bicarbonates - metabolism ; Biomass ; Blooms ; Carbon ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Carbon fixation ; Carbon Isotopes ; Carbon sequestration ; carbonate dehydratase ; Carbonic anhydrase ; Carbonic anhydrases ; Carbonic Anhydrases - metabolism ; Cell Membrane Permeability ; CO2 concentrating mechanism ; cold ; Cold Temperature ; Cold water ; Constants ; Diatoms ; Diatoms - cytology ; Diatoms - metabolism ; Dominant species ; energy expenditure ; Energy Metabolism ; growing season ; Inorganic carbon ; Isotope Labeling ; Kinetics ; Low temperature ; Marine microorganisms ; Mathematical models ; Membrane permeability ; Membranes ; Model testing ; modeling ; Models, Theoretical ; Numerical models ; Oceans ; Peninsulas ; Permeability ; Phytoplankton ; Plankton ; Plant cells ; Polar environments ; primary production ; psychrophilic ; Ribulose-bisphosphate carboxylase ; Saturation ; Sea water ; Seasons ; temperature ; Temperature requirements ; Uptake ; Water temperature ; Western Antarctic Peninsula</subject><ispartof>The New phytologist, 2015, Vol.205 (1), p.192-201</ispartof><rights>2015 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.205.1.192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.205.1.192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25308897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kranz, Sven A</creatorcontrib><creatorcontrib>Young, Jodi N</creatorcontrib><creatorcontrib>Hopkinson, Brian M</creatorcontrib><creatorcontrib>Goldman, Johanna A. L</creatorcontrib><creatorcontrib>Tortell, Philippe D</creatorcontrib><creatorcontrib>Morel, François M. M</creatorcontrib><title>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.</description><subject>Antarctic Regions</subject><subject>Bacillariophyceae</subject><subject>bicarbonates</subject><subject>Bicarbonates - metabolism</subject><subject>Biomass</subject><subject>Blooms</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Carbon fixation</subject><subject>Carbon Isotopes</subject><subject>Carbon sequestration</subject><subject>carbonate dehydratase</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>CO2 concentrating mechanism</subject><subject>cold</subject><subject>Cold Temperature</subject><subject>Cold water</subject><subject>Constants</subject><subject>Diatoms</subject><subject>Diatoms - cytology</subject><subject>Diatoms - metabolism</subject><subject>Dominant species</subject><subject>energy expenditure</subject><subject>Energy Metabolism</subject><subject>growing season</subject><subject>Inorganic carbon</subject><subject>Isotope Labeling</subject><subject>Kinetics</subject><subject>Low temperature</subject><subject>Marine microorganisms</subject><subject>Mathematical models</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Model testing</subject><subject>modeling</subject><subject>Models, Theoretical</subject><subject>Numerical models</subject><subject>Oceans</subject><subject>Peninsulas</subject><subject>Permeability</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Plant cells</subject><subject>Polar environments</subject><subject>primary production</subject><subject>psychrophilic</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Saturation</subject><subject>Sea water</subject><subject>Seasons</subject><subject>temperature</subject><subject>Temperature requirements</subject><subject>Uptake</subject><subject>Water temperature</subject><subject>Western Antarctic Peninsula</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFvFCEUxonR2G314D-gk3jpZVpgBgaOZlOtycaaaBNvyLCPXTYzMAUmm_3vpbu1Bw9ygbz3-14-vofQO4KvSDnXftpeESo7_gItSMtlLUjTvUQLjKmoect_naHzlHYYY8k4fY3OKGuwELJboN-rsK8yjBNEnecIVYT1bCBVeQsVeIgbyM6U6sPsIozgc2VDPHaXd7QywZtSK1rnN9UIZqu9S2PlfLV2OocxvUGvrB4SvH26L9D955ufy9t6dffl6_LTqrYtbnkN0ug1ZxpTZpuedG3DiO3BCCZ4L7kU1mJjWskI41bbzrSG8V40rMWUdAw3F-jyNHeK4WGGlNXokoFh0B7CnBThVIiu_JkV9OM_6C7M0Rd3ijLSlGAYpv-jyqxOCi7kI_X-iZr7EdZqim7U8aD-JlyA6xOwdwMcnvsEq8fVqbI6dVyd-vb99vgoivqk2KUc4rPCw37aHnIYwsYVMxQzRRQ5Wvhw4q0OSm-iS-r-B8WEYUxEV9Jp_gCp86Od</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Kranz, Sven A</creator><creator>Young, Jodi N</creator><creator>Hopkinson, Brian M</creator><creator>Goldman, Johanna A. L</creator><creator>Tortell, Philippe D</creator><creator>Morel, François M. M</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2015</creationdate><title>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</title><author>Kranz, Sven A ; Young, Jodi N ; Hopkinson, Brian M ; Goldman, Johanna A. L ; Tortell, Philippe D ; Morel, François M. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4046-e9cad65a025f3b174351fbec8586b9698ff0cc495156faf7c4c56b83540217503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antarctic Regions</topic><topic>Bacillariophyceae</topic><topic>bicarbonates</topic><topic>Bicarbonates - metabolism</topic><topic>Biomass</topic><topic>Blooms</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Carbon fixation</topic><topic>Carbon Isotopes</topic><topic>Carbon sequestration</topic><topic>carbonate dehydratase</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>CO2 concentrating mechanism</topic><topic>cold</topic><topic>Cold Temperature</topic><topic>Cold water</topic><topic>Constants</topic><topic>Diatoms</topic><topic>Diatoms - cytology</topic><topic>Diatoms - metabolism</topic><topic>Dominant species</topic><topic>energy expenditure</topic><topic>Energy Metabolism</topic><topic>growing season</topic><topic>Inorganic carbon</topic><topic>Isotope Labeling</topic><topic>Kinetics</topic><topic>Low temperature</topic><topic>Marine microorganisms</topic><topic>Mathematical models</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Model testing</topic><topic>modeling</topic><topic>Models, Theoretical</topic><topic>Numerical models</topic><topic>Oceans</topic><topic>Peninsulas</topic><topic>Permeability</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Plant cells</topic><topic>Polar environments</topic><topic>primary production</topic><topic>psychrophilic</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Saturation</topic><topic>Sea water</topic><topic>Seasons</topic><topic>temperature</topic><topic>Temperature requirements</topic><topic>Uptake</topic><topic>Water temperature</topic><topic>Western Antarctic Peninsula</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kranz, Sven A</creatorcontrib><creatorcontrib>Young, Jodi N</creatorcontrib><creatorcontrib>Hopkinson, Brian M</creatorcontrib><creatorcontrib>Goldman, Johanna A. L</creatorcontrib><creatorcontrib>Tortell, Philippe D</creatorcontrib><creatorcontrib>Morel, François M. M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kranz, Sven A</au><au>Young, Jodi N</au><au>Hopkinson, Brian M</au><au>Goldman, Johanna A. L</au><au>Tortell, Philippe D</au><au>Morel, François M. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2015</date><risdate>2015</risdate><volume>205</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>25308897</pmid><doi>10.1111/nph.12976</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2015, Vol.205 (1), p.192-201 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1628878975 |
source | Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles; MEDLINE; IngentaConnect Open Access; JSTOR; EZB Electronic Journals Library |
subjects | Antarctic Regions Bacillariophyceae bicarbonates Bicarbonates - metabolism Biomass Blooms Carbon Carbon dioxide Carbon Dioxide - metabolism Carbon dioxide fixation Carbon fixation Carbon Isotopes Carbon sequestration carbonate dehydratase Carbonic anhydrase Carbonic anhydrases Carbonic Anhydrases - metabolism Cell Membrane Permeability CO2 concentrating mechanism cold Cold Temperature Cold water Constants Diatoms Diatoms - cytology Diatoms - metabolism Dominant species energy expenditure Energy Metabolism growing season Inorganic carbon Isotope Labeling Kinetics Low temperature Marine microorganisms Mathematical models Membrane permeability Membranes Model testing modeling Models, Theoretical Numerical models Oceans Peninsulas Permeability Phytoplankton Plankton Plant cells Polar environments primary production psychrophilic Ribulose-bisphosphate carboxylase Saturation Sea water Seasons temperature Temperature requirements Uptake Water temperature Western Antarctic Peninsula |
title | Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20reduces%20the%20energetic%20requirement%20for%20the%20CO2%20concentrating%20mechanism%20in%20diatoms&rft.jtitle=The%20New%20phytologist&rft.au=Kranz,%20Sven%20A&rft.date=2015&rft.volume=205&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12976&rft_dat=%3Cjstor_proqu%3Enewphytologist.205.1.192%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627986892&rft_id=info:pmid/25308897&rft_jstor_id=newphytologist.205.1.192&rfr_iscdi=true |