Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms

The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2015, Vol.205 (1), p.192-201
Hauptverfasser: Kranz, Sven A, Young, Jodi N, Hopkinson, Brian M, Goldman, Johanna A. L, Tortell, Philippe D, Morel, François M. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 192
container_title The New phytologist
container_volume 205
creator Kranz, Sven A
Young, Jodi N
Hopkinson, Brian M
Goldman, Johanna A. L
Tortell, Philippe D
Morel, François M. M
description The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.
doi_str_mv 10.1111/nph.12976
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1628878975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.205.1.192</jstor_id><sourcerecordid>newphytologist.205.1.192</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4046-e9cad65a025f3b174351fbec8586b9698ff0cc495156faf7c4c56b83540217503</originalsourceid><addsrcrecordid>eNp9kcFvFCEUxonR2G314D-gk3jpZVpgBgaOZlOtycaaaBNvyLCPXTYzMAUmm_3vpbu1Bw9ygbz3-14-vofQO4KvSDnXftpeESo7_gItSMtlLUjTvUQLjKmoect_naHzlHYYY8k4fY3OKGuwELJboN-rsK8yjBNEnecIVYT1bCBVeQsVeIgbyM6U6sPsIozgc2VDPHaXd7QywZtSK1rnN9UIZqu9S2PlfLV2OocxvUGvrB4SvH26L9D955ufy9t6dffl6_LTqrYtbnkN0ug1ZxpTZpuedG3DiO3BCCZ4L7kU1mJjWskI41bbzrSG8V40rMWUdAw3F-jyNHeK4WGGlNXokoFh0B7CnBThVIiu_JkV9OM_6C7M0Rd3ijLSlGAYpv-jyqxOCi7kI_X-iZr7EdZqim7U8aD-JlyA6xOwdwMcnvsEq8fVqbI6dVyd-vb99vgoivqk2KUc4rPCw37aHnIYwsYVMxQzRRQ5Wvhw4q0OSm-iS-r-B8WEYUxEV9Jp_gCp86Od</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627986892</pqid></control><display><type>article</type><title>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles</source><source>MEDLINE</source><source>IngentaConnect Open Access</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Kranz, Sven A ; Young, Jodi N ; Hopkinson, Brian M ; Goldman, Johanna A. L ; Tortell, Philippe D ; Morel, François M. M</creator><creatorcontrib>Kranz, Sven A ; Young, Jodi N ; Hopkinson, Brian M ; Goldman, Johanna A. L ; Tortell, Philippe D ; Morel, François M. M</creatorcontrib><description>The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12976</identifier><identifier>PMID: 25308897</identifier><language>eng</language><publisher>England: Academic Press</publisher><subject>Antarctic Regions ; Bacillariophyceae ; bicarbonates ; Bicarbonates - metabolism ; Biomass ; Blooms ; Carbon ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon dioxide fixation ; Carbon fixation ; Carbon Isotopes ; Carbon sequestration ; carbonate dehydratase ; Carbonic anhydrase ; Carbonic anhydrases ; Carbonic Anhydrases - metabolism ; Cell Membrane Permeability ; CO2 concentrating mechanism ; cold ; Cold Temperature ; Cold water ; Constants ; Diatoms ; Diatoms - cytology ; Diatoms - metabolism ; Dominant species ; energy expenditure ; Energy Metabolism ; growing season ; Inorganic carbon ; Isotope Labeling ; Kinetics ; Low temperature ; Marine microorganisms ; Mathematical models ; Membrane permeability ; Membranes ; Model testing ; modeling ; Models, Theoretical ; Numerical models ; Oceans ; Peninsulas ; Permeability ; Phytoplankton ; Plankton ; Plant cells ; Polar environments ; primary production ; psychrophilic ; Ribulose-bisphosphate carboxylase ; Saturation ; Sea water ; Seasons ; temperature ; Temperature requirements ; Uptake ; Water temperature ; Western Antarctic Peninsula</subject><ispartof>The New phytologist, 2015, Vol.205 (1), p.192-201</ispartof><rights>2015 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.205.1.192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.205.1.192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25308897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kranz, Sven A</creatorcontrib><creatorcontrib>Young, Jodi N</creatorcontrib><creatorcontrib>Hopkinson, Brian M</creatorcontrib><creatorcontrib>Goldman, Johanna A. L</creatorcontrib><creatorcontrib>Tortell, Philippe D</creatorcontrib><creatorcontrib>Morel, François M. M</creatorcontrib><title>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.</description><subject>Antarctic Regions</subject><subject>Bacillariophyceae</subject><subject>bicarbonates</subject><subject>Bicarbonates - metabolism</subject><subject>Biomass</subject><subject>Blooms</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Carbon fixation</subject><subject>Carbon Isotopes</subject><subject>Carbon sequestration</subject><subject>carbonate dehydratase</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>CO2 concentrating mechanism</subject><subject>cold</subject><subject>Cold Temperature</subject><subject>Cold water</subject><subject>Constants</subject><subject>Diatoms</subject><subject>Diatoms - cytology</subject><subject>Diatoms - metabolism</subject><subject>Dominant species</subject><subject>energy expenditure</subject><subject>Energy Metabolism</subject><subject>growing season</subject><subject>Inorganic carbon</subject><subject>Isotope Labeling</subject><subject>Kinetics</subject><subject>Low temperature</subject><subject>Marine microorganisms</subject><subject>Mathematical models</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Model testing</subject><subject>modeling</subject><subject>Models, Theoretical</subject><subject>Numerical models</subject><subject>Oceans</subject><subject>Peninsulas</subject><subject>Permeability</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Plant cells</subject><subject>Polar environments</subject><subject>primary production</subject><subject>psychrophilic</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Saturation</subject><subject>Sea water</subject><subject>Seasons</subject><subject>temperature</subject><subject>Temperature requirements</subject><subject>Uptake</subject><subject>Water temperature</subject><subject>Western Antarctic Peninsula</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFvFCEUxonR2G314D-gk3jpZVpgBgaOZlOtycaaaBNvyLCPXTYzMAUmm_3vpbu1Bw9ygbz3-14-vofQO4KvSDnXftpeESo7_gItSMtlLUjTvUQLjKmoect_naHzlHYYY8k4fY3OKGuwELJboN-rsK8yjBNEnecIVYT1bCBVeQsVeIgbyM6U6sPsIozgc2VDPHaXd7QywZtSK1rnN9UIZqu9S2PlfLV2OocxvUGvrB4SvH26L9D955ufy9t6dffl6_LTqrYtbnkN0ug1ZxpTZpuedG3DiO3BCCZ4L7kU1mJjWskI41bbzrSG8V40rMWUdAw3F-jyNHeK4WGGlNXokoFh0B7CnBThVIiu_JkV9OM_6C7M0Rd3ijLSlGAYpv-jyqxOCi7kI_X-iZr7EdZqim7U8aD-JlyA6xOwdwMcnvsEq8fVqbI6dVyd-vb99vgoivqk2KUc4rPCw37aHnIYwsYVMxQzRRQ5Wvhw4q0OSm-iS-r-B8WEYUxEV9Jp_gCp86Od</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Kranz, Sven A</creator><creator>Young, Jodi N</creator><creator>Hopkinson, Brian M</creator><creator>Goldman, Johanna A. L</creator><creator>Tortell, Philippe D</creator><creator>Morel, François M. M</creator><general>Academic Press</general><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2015</creationdate><title>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</title><author>Kranz, Sven A ; Young, Jodi N ; Hopkinson, Brian M ; Goldman, Johanna A. L ; Tortell, Philippe D ; Morel, François M. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4046-e9cad65a025f3b174351fbec8586b9698ff0cc495156faf7c4c56b83540217503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antarctic Regions</topic><topic>Bacillariophyceae</topic><topic>bicarbonates</topic><topic>Bicarbonates - metabolism</topic><topic>Biomass</topic><topic>Blooms</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Carbon fixation</topic><topic>Carbon Isotopes</topic><topic>Carbon sequestration</topic><topic>carbonate dehydratase</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>CO2 concentrating mechanism</topic><topic>cold</topic><topic>Cold Temperature</topic><topic>Cold water</topic><topic>Constants</topic><topic>Diatoms</topic><topic>Diatoms - cytology</topic><topic>Diatoms - metabolism</topic><topic>Dominant species</topic><topic>energy expenditure</topic><topic>Energy Metabolism</topic><topic>growing season</topic><topic>Inorganic carbon</topic><topic>Isotope Labeling</topic><topic>Kinetics</topic><topic>Low temperature</topic><topic>Marine microorganisms</topic><topic>Mathematical models</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Model testing</topic><topic>modeling</topic><topic>Models, Theoretical</topic><topic>Numerical models</topic><topic>Oceans</topic><topic>Peninsulas</topic><topic>Permeability</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Plant cells</topic><topic>Polar environments</topic><topic>primary production</topic><topic>psychrophilic</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Saturation</topic><topic>Sea water</topic><topic>Seasons</topic><topic>temperature</topic><topic>Temperature requirements</topic><topic>Uptake</topic><topic>Water temperature</topic><topic>Western Antarctic Peninsula</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kranz, Sven A</creatorcontrib><creatorcontrib>Young, Jodi N</creatorcontrib><creatorcontrib>Hopkinson, Brian M</creatorcontrib><creatorcontrib>Goldman, Johanna A. L</creatorcontrib><creatorcontrib>Tortell, Philippe D</creatorcontrib><creatorcontrib>Morel, François M. M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kranz, Sven A</au><au>Young, Jodi N</au><au>Hopkinson, Brian M</au><au>Goldman, Johanna A. L</au><au>Tortell, Philippe D</au><au>Morel, François M. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2015</date><risdate>2015</risdate><volume>205</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The goal of this study is to investigate the CO₂concentrating mechanism (CCM) of the dominant phytoplankton species during the growing season at Palmer station in the Western Antarctic Peninsula. Key CCM parameters (cellular half‐saturation constants for CO₂fixation, carbonic anhydrase activity, CO₂/HCO₃⁻uptake, δ¹³Cₒᵣg) in natural phytoplankton assemblages were determined. Those results, together with additional measurements on CO₂membrane permeability from Fragilariopsis cylindrus laboratory cultures, were used to develop a numerical model of the CCM of cold water diatoms. The field data demonstrate that the dominant species throughout the season possess an effective CCM, which achieves near saturation of CO₂for fixation. The model provides a means to examine the role of eCA activity and HCO₃⁻/CO₂uptake in the functioning of the CCM. According to the model, the increase in δ¹³Cₒᵣgduring the bloom results chiefly from decreasing ambient CO₂concentration (which reduces the gross diffusive flux across the membrane) rather than a shift in inorganic carbon uptake from CO₂to HCO₃⁻. The CCM of diatoms in the Western Antarctic Peninsula functions with a relatively small expenditure of energy, resulting chiefly from the low half‐saturation constant for Rubisco at cold temperatures.</abstract><cop>England</cop><pub>Academic Press</pub><pmid>25308897</pmid><doi>10.1111/nph.12976</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2015, Vol.205 (1), p.192-201
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1628878975
source Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles; MEDLINE; IngentaConnect Open Access; JSTOR; EZB Electronic Journals Library
subjects Antarctic Regions
Bacillariophyceae
bicarbonates
Bicarbonates - metabolism
Biomass
Blooms
Carbon
Carbon dioxide
Carbon Dioxide - metabolism
Carbon dioxide fixation
Carbon fixation
Carbon Isotopes
Carbon sequestration
carbonate dehydratase
Carbonic anhydrase
Carbonic anhydrases
Carbonic Anhydrases - metabolism
Cell Membrane Permeability
CO2 concentrating mechanism
cold
Cold Temperature
Cold water
Constants
Diatoms
Diatoms - cytology
Diatoms - metabolism
Dominant species
energy expenditure
Energy Metabolism
growing season
Inorganic carbon
Isotope Labeling
Kinetics
Low temperature
Marine microorganisms
Mathematical models
Membrane permeability
Membranes
Model testing
modeling
Models, Theoretical
Numerical models
Oceans
Peninsulas
Permeability
Phytoplankton
Plankton
Plant cells
Polar environments
primary production
psychrophilic
Ribulose-bisphosphate carboxylase
Saturation
Sea water
Seasons
temperature
Temperature requirements
Uptake
Water temperature
Western Antarctic Peninsula
title Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20reduces%20the%20energetic%20requirement%20for%20the%20CO2%20concentrating%20mechanism%20in%20diatoms&rft.jtitle=The%20New%20phytologist&rft.au=Kranz,%20Sven%20A&rft.date=2015&rft.volume=205&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12976&rft_dat=%3Cjstor_proqu%3Enewphytologist.205.1.192%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627986892&rft_id=info:pmid/25308897&rft_jstor_id=newphytologist.205.1.192&rfr_iscdi=true