Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors
The two-pore domain potassium (K2P) channels TASK-1 ( KCNK3 ) and TASK-3 ( KCNK9 ) are important determinants of background K + conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G protein...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-11, Vol.5 (1), p.5540-5540, Article 5540 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5540 |
---|---|
container_issue | 1 |
container_start_page | 5540 |
container_title | Nature communications |
container_volume | 5 |
creator | Wilke, Bettina U. Lindner, Moritz Greifenberg, Lea Albus, Alexandra Kronimus, Yannick Bünemann, Moritz Leitner, Michael G. Oliver, Dominik |
description | The two-pore domain potassium (K2P) channels TASK-1 (
KCNK3
) and TASK-3 (
KCNK9
) are important determinants of background K
+
conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gα
q/11
subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P
2
nor release of the downstream messengers IP
3
and Ca
2+
. Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG—but not in downstream lipid metabolites—mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability.
TASK-1 and -3 are members of the two-pore domain K
+
channel family that play important roles in the regulation of cellular excitability. Here, Wilke
et al.
demonstrate that the second messenger lipid diacylglycerol (DAG) gates TASK1/3, defining a new role for DAG in controlling the dynamics of cellular excitability. |
doi_str_mv | 10.1038/ncomms6540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1628241699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3506584681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-c8624847a77eac5bc89fe64ba76e741a5a76d8762de17b94b24d53cb9a55b84a3</originalsourceid><addsrcrecordid>eNpl0EFLwzAYBuAgihtzF3-AFLyIUk3StEmPY-oUBx7cziVNv82OtOmS9tB_b8amDs0lH-TJm_AidEnwPcGReKiVqSqXxAyfoCHFjISE0-j0aB6gsXMb7FeUEsHYORrQmFEc43SIlo-lVL1e616BNTqooChlCy6wsO60bEtTB2YVLCYfb0FjWulc2VWB-pR1DdoFeR_MtqEyXaOh8HcUNK2x7gKdraR2MD7sI7R8flpMX8L5--x1OpmHKhK8DZVIKBOMS85BqjhXIl1BwnLJE-CMyNgPheAJLYDwPGU5ZUUcqTyVcZwLJqMRutnnNtZsO3BtVpVOgdayBtO5jCRUUEaSNPX0-g_dmM7W_nc7xTlJsKBe3e6VssY5C6ussWUlbZ8RnO36zn779vjqENnlvrcf-t2uB3d74PxRvQZ79Ob_uC_S6oqf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627716082</pqid></control><display><type>article</type><title>Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors</title><source>Springer Nature OA/Free Journals</source><creator>Wilke, Bettina U. ; Lindner, Moritz ; Greifenberg, Lea ; Albus, Alexandra ; Kronimus, Yannick ; Bünemann, Moritz ; Leitner, Michael G. ; Oliver, Dominik</creator><creatorcontrib>Wilke, Bettina U. ; Lindner, Moritz ; Greifenberg, Lea ; Albus, Alexandra ; Kronimus, Yannick ; Bünemann, Moritz ; Leitner, Michael G. ; Oliver, Dominik</creatorcontrib><description>The two-pore domain potassium (K2P) channels TASK-1 (
KCNK3
) and TASK-3 (
KCNK9
) are important determinants of background K
+
conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gα
q/11
subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P
2
nor release of the downstream messengers IP
3
and Ca
2+
. Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG—but not in downstream lipid metabolites—mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability.
TASK-1 and -3 are members of the two-pore domain K
+
channel family that play important roles in the regulation of cellular excitability. Here, Wilke
et al.
demonstrate that the second messenger lipid diacylglycerol (DAG) gates TASK1/3, defining a new role for DAG in controlling the dynamics of cellular excitability.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6540</identifier><identifier>PMID: 25420509</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/10 ; 14/33 ; 14/63 ; 631/378/2586 ; 631/80/86 ; 9/74 ; 96 ; 96/95 ; Amino Acid Motifs ; Animals ; Calcium - metabolism ; Cell Line ; Diglycerides - metabolism ; GTP-Binding Protein alpha Subunits - genetics ; GTP-Binding Protein alpha Subunits - metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Humanities and Social Sciences ; Humans ; Inositol 1,4,5-Trisphosphate - metabolism ; Mice ; multidisciplinary ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Phosphatidylinositol 4,5-Diphosphate - metabolism ; Potassium Channels, Tandem Pore Domain - chemistry ; Potassium Channels, Tandem Pore Domain - genetics ; Potassium Channels, Tandem Pore Domain - metabolism ; Protein Kinase C - genetics ; Protein Kinase C - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Type C Phospholipases - genetics ; Type C Phospholipases - metabolism</subject><ispartof>Nature communications, 2014-11, Vol.5 (1), p.5540-5540, Article 5540</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-c8624847a77eac5bc89fe64ba76e741a5a76d8762de17b94b24d53cb9a55b84a3</citedby><cites>FETCH-LOGICAL-c387t-c8624847a77eac5bc89fe64ba76e741a5a76d8762de17b94b24d53cb9a55b84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms6540$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms6540$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6540$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25420509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilke, Bettina U.</creatorcontrib><creatorcontrib>Lindner, Moritz</creatorcontrib><creatorcontrib>Greifenberg, Lea</creatorcontrib><creatorcontrib>Albus, Alexandra</creatorcontrib><creatorcontrib>Kronimus, Yannick</creatorcontrib><creatorcontrib>Bünemann, Moritz</creatorcontrib><creatorcontrib>Leitner, Michael G.</creatorcontrib><creatorcontrib>Oliver, Dominik</creatorcontrib><title>Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The two-pore domain potassium (K2P) channels TASK-1 (
KCNK3
) and TASK-3 (
KCNK9
) are important determinants of background K
+
conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gα
q/11
subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P
2
nor release of the downstream messengers IP
3
and Ca
2+
. Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG—but not in downstream lipid metabolites—mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability.
TASK-1 and -3 are members of the two-pore domain K
+
channel family that play important roles in the regulation of cellular excitability. Here, Wilke
et al.
demonstrate that the second messenger lipid diacylglycerol (DAG) gates TASK1/3, defining a new role for DAG in controlling the dynamics of cellular excitability.</description><subject>14</subject><subject>14/10</subject><subject>14/33</subject><subject>14/63</subject><subject>631/378/2586</subject><subject>631/80/86</subject><subject>9/74</subject><subject>96</subject><subject>96/95</subject><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Cell Line</subject><subject>Diglycerides - metabolism</subject><subject>GTP-Binding Protein alpha Subunits - genetics</subject><subject>GTP-Binding Protein alpha Subunits - metabolism</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inositol 1,4,5-Trisphosphate - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Phosphatidylinositol 4,5-Diphosphate - metabolism</subject><subject>Potassium Channels, Tandem Pore Domain - chemistry</subject><subject>Potassium Channels, Tandem Pore Domain - genetics</subject><subject>Potassium Channels, Tandem Pore Domain - metabolism</subject><subject>Protein Kinase C - genetics</subject><subject>Protein Kinase C - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Type C Phospholipases - genetics</subject><subject>Type C Phospholipases - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0EFLwzAYBuAgihtzF3-AFLyIUk3StEmPY-oUBx7cziVNv82OtOmS9tB_b8amDs0lH-TJm_AidEnwPcGReKiVqSqXxAyfoCHFjISE0-j0aB6gsXMb7FeUEsHYORrQmFEc43SIlo-lVL1e616BNTqooChlCy6wsO60bEtTB2YVLCYfb0FjWulc2VWB-pR1DdoFeR_MtqEyXaOh8HcUNK2x7gKdraR2MD7sI7R8flpMX8L5--x1OpmHKhK8DZVIKBOMS85BqjhXIl1BwnLJE-CMyNgPheAJLYDwPGU5ZUUcqTyVcZwLJqMRutnnNtZsO3BtVpVOgdayBtO5jCRUUEaSNPX0-g_dmM7W_nc7xTlJsKBe3e6VssY5C6ussWUlbZ8RnO36zn779vjqENnlvrcf-t2uB3d74PxRvQZ79Ob_uC_S6oqf</recordid><startdate>20141125</startdate><enddate>20141125</enddate><creator>Wilke, Bettina U.</creator><creator>Lindner, Moritz</creator><creator>Greifenberg, Lea</creator><creator>Albus, Alexandra</creator><creator>Kronimus, Yannick</creator><creator>Bünemann, Moritz</creator><creator>Leitner, Michael G.</creator><creator>Oliver, Dominik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141125</creationdate><title>Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors</title><author>Wilke, Bettina U. ; Lindner, Moritz ; Greifenberg, Lea ; Albus, Alexandra ; Kronimus, Yannick ; Bünemann, Moritz ; Leitner, Michael G. ; Oliver, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-c8624847a77eac5bc89fe64ba76e741a5a76d8762de17b94b24d53cb9a55b84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14</topic><topic>14/10</topic><topic>14/33</topic><topic>14/63</topic><topic>631/378/2586</topic><topic>631/80/86</topic><topic>9/74</topic><topic>96</topic><topic>96/95</topic><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Cell Line</topic><topic>Diglycerides - metabolism</topic><topic>GTP-Binding Protein alpha Subunits - genetics</topic><topic>GTP-Binding Protein alpha Subunits - metabolism</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inositol 1,4,5-Trisphosphate - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Phosphatidylinositol 4,5-Diphosphate - metabolism</topic><topic>Potassium Channels, Tandem Pore Domain - chemistry</topic><topic>Potassium Channels, Tandem Pore Domain - genetics</topic><topic>Potassium Channels, Tandem Pore Domain - metabolism</topic><topic>Protein Kinase C - genetics</topic><topic>Protein Kinase C - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Type C Phospholipases - genetics</topic><topic>Type C Phospholipases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilke, Bettina U.</creatorcontrib><creatorcontrib>Lindner, Moritz</creatorcontrib><creatorcontrib>Greifenberg, Lea</creatorcontrib><creatorcontrib>Albus, Alexandra</creatorcontrib><creatorcontrib>Kronimus, Yannick</creatorcontrib><creatorcontrib>Bünemann, Moritz</creatorcontrib><creatorcontrib>Leitner, Michael G.</creatorcontrib><creatorcontrib>Oliver, Dominik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilke, Bettina U.</au><au>Lindner, Moritz</au><au>Greifenberg, Lea</au><au>Albus, Alexandra</au><au>Kronimus, Yannick</au><au>Bünemann, Moritz</au><au>Leitner, Michael G.</au><au>Oliver, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-11-25</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5540</spage><epage>5540</epage><pages>5540-5540</pages><artnum>5540</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The two-pore domain potassium (K2P) channels TASK-1 (
KCNK3
) and TASK-3 (
KCNK9
) are important determinants of background K
+
conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gα
q/11
subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P
2
nor release of the downstream messengers IP
3
and Ca
2+
. Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG—but not in downstream lipid metabolites—mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability.
TASK-1 and -3 are members of the two-pore domain K
+
channel family that play important roles in the regulation of cellular excitability. Here, Wilke
et al.
demonstrate that the second messenger lipid diacylglycerol (DAG) gates TASK1/3, defining a new role for DAG in controlling the dynamics of cellular excitability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25420509</pmid><doi>10.1038/ncomms6540</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-11, Vol.5 (1), p.5540-5540, Article 5540 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1628241699 |
source | Springer Nature OA/Free Journals |
subjects | 14 14/10 14/33 14/63 631/378/2586 631/80/86 9/74 96 96/95 Amino Acid Motifs Animals Calcium - metabolism Cell Line Diglycerides - metabolism GTP-Binding Protein alpha Subunits - genetics GTP-Binding Protein alpha Subunits - metabolism GTP-Binding Protein alpha Subunits, Gq-G11 Humanities and Social Sciences Humans Inositol 1,4,5-Trisphosphate - metabolism Mice multidisciplinary Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Phosphatidylinositol 4,5-Diphosphate - metabolism Potassium Channels, Tandem Pore Domain - chemistry Potassium Channels, Tandem Pore Domain - genetics Potassium Channels, Tandem Pore Domain - metabolism Protein Kinase C - genetics Protein Kinase C - metabolism Science Science (multidisciplinary) Signal Transduction Type C Phospholipases - genetics Type C Phospholipases - metabolism |
title | Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diacylglycerol%20mediates%20regulation%20of%20TASK%20potassium%20channels%20by%20Gq-coupled%20receptors&rft.jtitle=Nature%20communications&rft.au=Wilke,%20Bettina%20U.&rft.date=2014-11-25&rft.volume=5&rft.issue=1&rft.spage=5540&rft.epage=5540&rft.pages=5540-5540&rft.artnum=5540&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6540&rft_dat=%3Cproquest_C6C%3E3506584681%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627716082&rft_id=info:pmid/25420509&rfr_iscdi=true |