Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase

The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2014-11, Vol.98 (22), p.9271-9281
Hauptverfasser: Kim, Baek-Joong, Hong, Seung-Hye, Shin, Kyung-Chul, Jo, Ye-Seul, Oh, Deok-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9281
container_issue 22
container_start_page 9271
container_title Applied microbiology and biotechnology
container_volume 98
creator Kim, Baek-Joong
Hong, Seung-Hye
Shin, Kyung-Chul
Jo, Ye-Seul
Oh, Deok-Kun
description The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cₐₜ/K ₘ of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cₐₜ/K ₘ of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.
doi_str_mv 10.1007/s00253-014-5827-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1627978297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389508622</galeid><sourcerecordid>A389508622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-278b3320f8ce1ee7f20201850928679499c1bf30ddfcbc755edd557ec85a4b6a3</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEokPhAdhAJDawSLGdOLaX1UBLpRFIlK4tx7meukriYjsI5gV4be4o5WcQQl747zvHvvYpiqeUnFBCxOtECON1RWhTcclEtbtXrGhTs4q0tLlfrAgVvBJcyaPiUUo3hFAm2_ZhccQaKUnLxKr4vr420dgM0e9M9mEqgytNecYkeV9-MdGbKe-XNhVinZ9CgtKnMEI0OHIxjOU5hM5YPwxzKvM1xDH0MPkcvfPWTKn0OM04gb40Cb3fVFsz4JEHVo-LB84MCZ7c9cfF1dnbT-t31ebD-cX6dFPZtha5YkJ2dc2IkxYogHCMMEIlJworE6pRytLO1aTvne2s4Bz6nnMBVnLTdK2pj4uXi-9tDJ9nSFmPPlkYBjNBmJOm-CpKSKYEoi_-Qm_CHCe8HVK0VbLGM39TWBRoP7mQ8T33pvq0looT2TKG1Mk_KGw9jN6GCZzH9QPBqwMBMhm-5q2ZU9IXlx8PWbqwNoaUIjh9G_1o4jdNid4HRS9B0RgUvQ-K3qHm2V1xczdC_0vxMxkIsAVIuDVtIf5R_X9cny8iZ4I22-iTvrrED2owepIyruofzIfQpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616983286</pqid></control><display><type>article</type><title>Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kim, Baek-Joong ; Hong, Seung-Hye ; Shin, Kyung-Chul ; Jo, Ye-Seul ; Oh, Deok-Kun</creator><creatorcontrib>Kim, Baek-Joong ; Hong, Seung-Hye ; Shin, Kyung-Chul ; Jo, Ye-Seul ; Oh, Deok-Kun</creatorcontrib><description>The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cₐₜ/K ₘ of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cₐₜ/K ₘ of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-5827-z</identifier><identifier>PMID: 24880627</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aldose-Ketose Isomerases - genetics ; Aldose-Ketose Isomerases - metabolism ; Amino Acid Substitution ; Amino acids ; Arabinose - metabolism ; Bacillus thermodenitrificans ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; catalytic activity ; Cloning ; Crystal structure ; E coli ; Energy ; Enzymes ; Galactose - metabolism ; Geobacillus ; Geobacillus - enzymology ; Geobacillus - genetics ; Gram-positive bacteria ; Hexoses - metabolism ; Isomerases ; isomerization ; Kinetics ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation ; Mutation, Missense ; Physiological aspects ; Properties ; Proteins ; site-directed mutagenesis ; Studies ; Substrate Specificity</subject><ispartof>Applied microbiology and biotechnology, 2014-11, Vol.98 (22), p.9271-9281</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-278b3320f8ce1ee7f20201850928679499c1bf30ddfcbc755edd557ec85a4b6a3</citedby><cites>FETCH-LOGICAL-c637t-278b3320f8ce1ee7f20201850928679499c1bf30ddfcbc755edd557ec85a4b6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-014-5827-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-014-5827-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24880627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Baek-Joong</creatorcontrib><creatorcontrib>Hong, Seung-Hye</creatorcontrib><creatorcontrib>Shin, Kyung-Chul</creatorcontrib><creatorcontrib>Jo, Ye-Seul</creatorcontrib><creatorcontrib>Oh, Deok-Kun</creatorcontrib><title>Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cₐₜ/K ₘ of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cₐₜ/K ₘ of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.</description><subject>Aldose-Ketose Isomerases - genetics</subject><subject>Aldose-Ketose Isomerases - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Arabinose - metabolism</subject><subject>Bacillus thermodenitrificans</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>catalytic activity</subject><subject>Cloning</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Galactose - metabolism</subject><subject>Geobacillus</subject><subject>Geobacillus - enzymology</subject><subject>Geobacillus - genetics</subject><subject>Gram-positive bacteria</subject><subject>Hexoses - metabolism</subject><subject>Isomerases</subject><subject>isomerization</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Proteins</subject><subject>site-directed mutagenesis</subject><subject>Studies</subject><subject>Substrate Specificity</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks1u1DAUhSMEokPhAdhAJDawSLGdOLaX1UBLpRFIlK4tx7meukriYjsI5gV4be4o5WcQQl747zvHvvYpiqeUnFBCxOtECON1RWhTcclEtbtXrGhTs4q0tLlfrAgVvBJcyaPiUUo3hFAm2_ZhccQaKUnLxKr4vr420dgM0e9M9mEqgytNecYkeV9-MdGbKe-XNhVinZ9CgtKnMEI0OHIxjOU5hM5YPwxzKvM1xDH0MPkcvfPWTKn0OM04gb40Cb3fVFsz4JEHVo-LB84MCZ7c9cfF1dnbT-t31ebD-cX6dFPZtha5YkJ2dc2IkxYogHCMMEIlJworE6pRytLO1aTvne2s4Bz6nnMBVnLTdK2pj4uXi-9tDJ9nSFmPPlkYBjNBmJOm-CpKSKYEoi_-Qm_CHCe8HVK0VbLGM39TWBRoP7mQ8T33pvq0looT2TKG1Mk_KGw9jN6GCZzH9QPBqwMBMhm-5q2ZU9IXlx8PWbqwNoaUIjh9G_1o4jdNid4HRS9B0RgUvQ-K3qHm2V1xczdC_0vxMxkIsAVIuDVtIf5R_X9cny8iZ4I22-iTvrrED2owepIyruofzIfQpQ</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Kim, Baek-Joong</creator><creator>Hong, Seung-Hye</creator><creator>Shin, Kyung-Chul</creator><creator>Jo, Ye-Seul</creator><creator>Oh, Deok-Kun</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20141101</creationdate><title>Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase</title><author>Kim, Baek-Joong ; Hong, Seung-Hye ; Shin, Kyung-Chul ; Jo, Ye-Seul ; Oh, Deok-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-278b3320f8ce1ee7f20201850928679499c1bf30ddfcbc755edd557ec85a4b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aldose-Ketose Isomerases - genetics</topic><topic>Aldose-Ketose Isomerases - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Arabinose - metabolism</topic><topic>Bacillus thermodenitrificans</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>catalytic activity</topic><topic>Cloning</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Galactose - metabolism</topic><topic>Geobacillus</topic><topic>Geobacillus - enzymology</topic><topic>Geobacillus - genetics</topic><topic>Gram-positive bacteria</topic><topic>Hexoses - metabolism</topic><topic>Isomerases</topic><topic>isomerization</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Proteins</topic><topic>site-directed mutagenesis</topic><topic>Studies</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Baek-Joong</creatorcontrib><creatorcontrib>Hong, Seung-Hye</creatorcontrib><creatorcontrib>Shin, Kyung-Chul</creatorcontrib><creatorcontrib>Jo, Ye-Seul</creatorcontrib><creatorcontrib>Oh, Deok-Kun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Baek-Joong</au><au>Hong, Seung-Hye</au><au>Shin, Kyung-Chul</au><au>Jo, Ye-Seul</au><au>Oh, Deok-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>98</volume><issue>22</issue><spage>9271</spage><epage>9281</epage><pages>9271-9281</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cₐₜ/K ₘ of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cₐₜ/K ₘ of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24880627</pmid><doi>10.1007/s00253-014-5827-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2014-11, Vol.98 (22), p.9271-9281
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1627978297
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aldose-Ketose Isomerases - genetics
Aldose-Ketose Isomerases - metabolism
Amino Acid Substitution
Amino acids
Arabinose - metabolism
Bacillus thermodenitrificans
Biomedical and Life Sciences
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
catalytic activity
Cloning
Crystal structure
E coli
Energy
Enzymes
Galactose - metabolism
Geobacillus
Geobacillus - enzymology
Geobacillus - genetics
Gram-positive bacteria
Hexoses - metabolism
Isomerases
isomerization
Kinetics
Life Sciences
Microbial Genetics and Genomics
Microbiology
Mutagenesis
Mutagenesis, Site-Directed
Mutant Proteins - genetics
Mutant Proteins - metabolism
Mutation
Mutation, Missense
Physiological aspects
Properties
Proteins
site-directed mutagenesis
Studies
Substrate Specificity
title Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20F280N%20variant%20of%20L-arabinose%20isomerase%20from%20Geobacillus%20thermodenitrificans%20identified%20as%20a%20D-galactose%20isomerase&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kim,%20Baek-Joong&rft.date=2014-11-01&rft.volume=98&rft.issue=22&rft.spage=9271&rft.epage=9281&rft.pages=9271-9281&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-5827-z&rft_dat=%3Cgale_proqu%3EA389508622%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616983286&rft_id=info:pmid/24880627&rft_galeid=A389508622&rfr_iscdi=true