Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants

This work evaluates the feasibility of several technologies for the removal of trihalomethanes (THM) precursors, usually humic substances found in real surface water, which are transformed into these potential carcinogens (THMs) during the further disinfection by chlorination. The aim was to compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2013-12, Vol.330, p.28-34
Hauptverfasser: Reguero, V., López-Fernández, R., Fermoso, J., Prieto, O., Pocostales, P., González, R., Irusta, R., Villaverde, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 28
container_title Desalination
container_volume 330
creator Reguero, V.
López-Fernández, R.
Fermoso, J.
Prieto, O.
Pocostales, P.
González, R.
Irusta, R.
Villaverde, S.
description This work evaluates the feasibility of several technologies for the removal of trihalomethanes (THM) precursors, usually humic substances found in real surface water, which are transformed into these potential carcinogens (THMs) during the further disinfection by chlorination. The aim was to compare, an Activated Carbon Bed (ACB), an Ozonation Reactor (OR) and a Submerged Membrane Photocatalytic Reactor (SMPR) with TiO2/UV in terms of reduction efficiency of these THM precursors after chlorination. Taguchi's parameter design methodology was selected to study the most relevant factors that might influence the removal of THM precursors with each technology keeping the number of experiments at minimum. According to the study, OR showed low removal percentages of THM precursors (of 40–50%) while SMPR and ACB were more efficient technologies. SMPR achieved 86% removal of THM precursors when operating at the optimal conditions of TiO2 catalyst concentration of 0.5gL−1 (type PC500® from Cristal Global). ACB attained the 87% removal of THM precursors when Filtracarb® CC60 8×30 (steam activated mineral coal) was used with a hydraulic retention time of 15min. •Evaluation of several technologies for the reduction of THMs in drinking water•Ozonation shows low removal THM percentages of 40–50%,•Membrane photocatalysis with TiO2 and activated carbon provide about 86% removal of THM.•The addition of synthetic HA increases the ratio of bromo derivatives to chloroform.•Taguchi's parameter design and statics (ANOVA) was used to optimize the systems.
doi_str_mv 10.1016/j.desal.2013.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1627977982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916413004244</els_id><sourcerecordid>1627977982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-db6238f9b561941180d42527b2d202e13fe5efcb8f936bbe65c7fc2d367cef0f3</originalsourceid><addsrcrecordid>eNp9kc1uEzEcxFcIJELhCTjgC1J62MUf--UDBxRBi9SIqmnPltf-O3HYtRfbCepT8Yp1SMWRk23pN-PRTFG8J7gimLSf9pWGKMeKYsIqzCtM6hfFgvQdK-u6rV8WC4wJKTlp69fFmxj3-Uk5Y4viz8pPsww2eoe8Qcq7I7hkvZMjSqB2zo9-ayEi6TSSaHMYJghb0GgN0xCkA3S788krmeT4mKxCdyBV8gEtN-vbu0tk8jXA5I_WbVEKdidHP0HaZWVEy_vr9SWaA6hDiD5EZB3SwbqfJ_i3TBCyBGSaciQ0j9Kl-LZ4ZeQY4d3zeVE8fPt6v7oub35cfV99uSlVTbtU6qGlrDd8aFrCa0J6rGva0G6gmmIKhBlowKghI6wdBmgb1RlFNWs7BQYbdlEsz75z8L8OEJOYbFQw5hDgD1GQlna863hPM8rOqAo-xgBGzMFOMjwKgsVpHrEXf-cRp3kE5iLPk1Ufnz-QUcnR5C6Vjf-k2b3FtO8z9-HMGemF3OalxMMmGzUYY05YxzPx-UxA7uNoIYioLDgF2uZmk9De_jfJE5yQtDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627977982</pqid></control><display><type>article</type><title>Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants</title><source>Elsevier ScienceDirect Journals</source><creator>Reguero, V. ; López-Fernández, R. ; Fermoso, J. ; Prieto, O. ; Pocostales, P. ; González, R. ; Irusta, R. ; Villaverde, S.</creator><creatorcontrib>Reguero, V. ; López-Fernández, R. ; Fermoso, J. ; Prieto, O. ; Pocostales, P. ; González, R. ; Irusta, R. ; Villaverde, S.</creatorcontrib><description>This work evaluates the feasibility of several technologies for the removal of trihalomethanes (THM) precursors, usually humic substances found in real surface water, which are transformed into these potential carcinogens (THMs) during the further disinfection by chlorination. The aim was to compare, an Activated Carbon Bed (ACB), an Ozonation Reactor (OR) and a Submerged Membrane Photocatalytic Reactor (SMPR) with TiO2/UV in terms of reduction efficiency of these THM precursors after chlorination. Taguchi's parameter design methodology was selected to study the most relevant factors that might influence the removal of THM precursors with each technology keeping the number of experiments at minimum. According to the study, OR showed low removal percentages of THM precursors (of 40–50%) while SMPR and ACB were more efficient technologies. SMPR achieved 86% removal of THM precursors when operating at the optimal conditions of TiO2 catalyst concentration of 0.5gL−1 (type PC500® from Cristal Global). ACB attained the 87% removal of THM precursors when Filtracarb® CC60 8×30 (steam activated mineral coal) was used with a hydraulic retention time of 15min. •Evaluation of several technologies for the reduction of THMs in drinking water•Ozonation shows low removal THM percentages of 40–50%,•Membrane photocatalysis with TiO2 and activated carbon provide about 86% removal of THM.•The addition of synthetic HA increases the ratio of bromo derivatives to chloroform.•Taguchi's parameter design and statics (ANOVA) was used to optimize the systems.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2013.09.014</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activated carbon ; Applied sciences ; carcinogens ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; chlorination ; coal ; Continental surface waters ; desalination ; disinfection ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; General and physical chemistry ; humic substances ; Membrane photocatalytic reactor ; Natural organic matter ; Natural water pollution ; Ozonation ; Pollution ; Reactors ; steam ; surface water ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; THMs ; water treatment ; Water treatment and pollution</subject><ispartof>Desalination, 2013-12, Vol.330, p.28-34</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-db6238f9b561941180d42527b2d202e13fe5efcb8f936bbe65c7fc2d367cef0f3</citedby><cites>FETCH-LOGICAL-c427t-db6238f9b561941180d42527b2d202e13fe5efcb8f936bbe65c7fc2d367cef0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0011916413004244$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27960288$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reguero, V.</creatorcontrib><creatorcontrib>López-Fernández, R.</creatorcontrib><creatorcontrib>Fermoso, J.</creatorcontrib><creatorcontrib>Prieto, O.</creatorcontrib><creatorcontrib>Pocostales, P.</creatorcontrib><creatorcontrib>González, R.</creatorcontrib><creatorcontrib>Irusta, R.</creatorcontrib><creatorcontrib>Villaverde, S.</creatorcontrib><title>Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants</title><title>Desalination</title><description>This work evaluates the feasibility of several technologies for the removal of trihalomethanes (THM) precursors, usually humic substances found in real surface water, which are transformed into these potential carcinogens (THMs) during the further disinfection by chlorination. The aim was to compare, an Activated Carbon Bed (ACB), an Ozonation Reactor (OR) and a Submerged Membrane Photocatalytic Reactor (SMPR) with TiO2/UV in terms of reduction efficiency of these THM precursors after chlorination. Taguchi's parameter design methodology was selected to study the most relevant factors that might influence the removal of THM precursors with each technology keeping the number of experiments at minimum. According to the study, OR showed low removal percentages of THM precursors (of 40–50%) while SMPR and ACB were more efficient technologies. SMPR achieved 86% removal of THM precursors when operating at the optimal conditions of TiO2 catalyst concentration of 0.5gL−1 (type PC500® from Cristal Global). ACB attained the 87% removal of THM precursors when Filtracarb® CC60 8×30 (steam activated mineral coal) was used with a hydraulic retention time of 15min. •Evaluation of several technologies for the reduction of THMs in drinking water•Ozonation shows low removal THM percentages of 40–50%,•Membrane photocatalysis with TiO2 and activated carbon provide about 86% removal of THM.•The addition of synthetic HA increases the ratio of bromo derivatives to chloroform.•Taguchi's parameter design and statics (ANOVA) was used to optimize the systems.</description><subject>Activated carbon</subject><subject>Applied sciences</subject><subject>carcinogens</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>chlorination</subject><subject>coal</subject><subject>Continental surface waters</subject><subject>desalination</subject><subject>disinfection</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>humic substances</subject><subject>Membrane photocatalytic reactor</subject><subject>Natural organic matter</subject><subject>Natural water pollution</subject><subject>Ozonation</subject><subject>Pollution</subject><subject>Reactors</subject><subject>steam</subject><subject>surface water</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>THMs</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEcxFcIJELhCTjgC1J62MUf--UDBxRBi9SIqmnPltf-O3HYtRfbCepT8Yp1SMWRk23pN-PRTFG8J7gimLSf9pWGKMeKYsIqzCtM6hfFgvQdK-u6rV8WC4wJKTlp69fFmxj3-Uk5Y4viz8pPsww2eoe8Qcq7I7hkvZMjSqB2zo9-ayEi6TSSaHMYJghb0GgN0xCkA3S788krmeT4mKxCdyBV8gEtN-vbu0tk8jXA5I_WbVEKdidHP0HaZWVEy_vr9SWaA6hDiD5EZB3SwbqfJ_i3TBCyBGSaciQ0j9Kl-LZ4ZeQY4d3zeVE8fPt6v7oub35cfV99uSlVTbtU6qGlrDd8aFrCa0J6rGva0G6gmmIKhBlowKghI6wdBmgb1RlFNWs7BQYbdlEsz75z8L8OEJOYbFQw5hDgD1GQlna863hPM8rOqAo-xgBGzMFOMjwKgsVpHrEXf-cRp3kE5iLPk1Ufnz-QUcnR5C6Vjf-k2b3FtO8z9-HMGemF3OalxMMmGzUYY05YxzPx-UxA7uNoIYioLDgF2uZmk9De_jfJE5yQtDI</recordid><startdate>20131202</startdate><enddate>20131202</enddate><creator>Reguero, V.</creator><creator>López-Fernández, R.</creator><creator>Fermoso, J.</creator><creator>Prieto, O.</creator><creator>Pocostales, P.</creator><creator>González, R.</creator><creator>Irusta, R.</creator><creator>Villaverde, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20131202</creationdate><title>Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants</title><author>Reguero, V. ; López-Fernández, R. ; Fermoso, J. ; Prieto, O. ; Pocostales, P. ; González, R. ; Irusta, R. ; Villaverde, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-db6238f9b561941180d42527b2d202e13fe5efcb8f936bbe65c7fc2d367cef0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activated carbon</topic><topic>Applied sciences</topic><topic>carcinogens</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>chlorination</topic><topic>coal</topic><topic>Continental surface waters</topic><topic>desalination</topic><topic>disinfection</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>humic substances</topic><topic>Membrane photocatalytic reactor</topic><topic>Natural organic matter</topic><topic>Natural water pollution</topic><topic>Ozonation</topic><topic>Pollution</topic><topic>Reactors</topic><topic>steam</topic><topic>surface water</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>THMs</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reguero, V.</creatorcontrib><creatorcontrib>López-Fernández, R.</creatorcontrib><creatorcontrib>Fermoso, J.</creatorcontrib><creatorcontrib>Prieto, O.</creatorcontrib><creatorcontrib>Pocostales, P.</creatorcontrib><creatorcontrib>González, R.</creatorcontrib><creatorcontrib>Irusta, R.</creatorcontrib><creatorcontrib>Villaverde, S.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reguero, V.</au><au>López-Fernández, R.</au><au>Fermoso, J.</au><au>Prieto, O.</au><au>Pocostales, P.</au><au>González, R.</au><au>Irusta, R.</au><au>Villaverde, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants</atitle><jtitle>Desalination</jtitle><date>2013-12-02</date><risdate>2013</risdate><volume>330</volume><spage>28</spage><epage>34</epage><pages>28-34</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>This work evaluates the feasibility of several technologies for the removal of trihalomethanes (THM) precursors, usually humic substances found in real surface water, which are transformed into these potential carcinogens (THMs) during the further disinfection by chlorination. The aim was to compare, an Activated Carbon Bed (ACB), an Ozonation Reactor (OR) and a Submerged Membrane Photocatalytic Reactor (SMPR) with TiO2/UV in terms of reduction efficiency of these THM precursors after chlorination. Taguchi's parameter design methodology was selected to study the most relevant factors that might influence the removal of THM precursors with each technology keeping the number of experiments at minimum. According to the study, OR showed low removal percentages of THM precursors (of 40–50%) while SMPR and ACB were more efficient technologies. SMPR achieved 86% removal of THM precursors when operating at the optimal conditions of TiO2 catalyst concentration of 0.5gL−1 (type PC500® from Cristal Global). ACB attained the 87% removal of THM precursors when Filtracarb® CC60 8×30 (steam activated mineral coal) was used with a hydraulic retention time of 15min. •Evaluation of several technologies for the reduction of THMs in drinking water•Ozonation shows low removal THM percentages of 40–50%,•Membrane photocatalysis with TiO2 and activated carbon provide about 86% removal of THM.•The addition of synthetic HA increases the ratio of bromo derivatives to chloroform.•Taguchi's parameter design and statics (ANOVA) was used to optimize the systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2013.09.014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2013-12, Vol.330, p.28-34
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_1627977982
source Elsevier ScienceDirect Journals
subjects Activated carbon
Applied sciences
carcinogens
Catalysis
Catalytic reactions
Chemical engineering
Chemistry
chlorination
coal
Continental surface waters
desalination
disinfection
Drinking water
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
General and physical chemistry
humic substances
Membrane photocatalytic reactor
Natural organic matter
Natural water pollution
Ozonation
Pollution
Reactors
steam
surface water
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
THMs
water treatment
Water treatment and pollution
title Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20conventional%20technologies%20and%20a%20Submerged%20Membrane%20Photocatalytic%20Reactor%20(SMPR)%20for%20removing%20trihalomethanes%20(THM)%20precursors%20in%20drinking%20water%20treatment%20plants&rft.jtitle=Desalination&rft.au=Reguero,%20V.&rft.date=2013-12-02&rft.volume=330&rft.spage=28&rft.epage=34&rft.pages=28-34&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2013.09.014&rft_dat=%3Cproquest_cross%3E1627977982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627977982&rft_id=info:pmid/&rft_els_id=S0011916413004244&rfr_iscdi=true