High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals

The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-11, Vol.48 (21), p.12760-12767
Hauptverfasser: Wambaugh, John F, Wang, Anran, Dionisio, Kathie L, Frame, Alicia, Egeghy, Peter, Judson, Richard, Setzer, R. Woodrow
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12767
container_issue 21
container_start_page 12760
container_title Environmental science & technology
container_volume 48
creator Wambaugh, John F
Wang, Anran
Dionisio, Kathie L
Frame, Alicia
Egeghy, Peter
Judson, Richard
Setzer, R. Woodrow
description The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.
doi_str_mv 10.1021/es503583j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1627973662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627973662</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</originalsourceid><addsrcrecordid>eNpl0MtKAzEUBuAgitbqwheQgAi6GM1lkskspVQrCLpowd2QySRtSmdSk4moT2_EekFXhwMf5_IDcITRBUYEX-rAEGWCLrfAADOCMiYY3gYDhDDNSsof98B-CEuEEKFI7II9wmhOeUkHYDax8wWcLryL88U69nCio7ehtypA4zx88NZ529s3283hJLayg-OXtQvRa9g7OO6erXddq7teruBooVur5CocgB2Tij7c1CGYXY-no0l2d39zO7q6y2RekD5rcoRzpmvOBFaNYUKipiw4ogrXhmlKpNJGitQLgWtkmto0BUlf5aXGkjM6BGefc9fePUUd-qq1QenVSnbaxVBhToqyoJyTRE_-0KWLvkvXfShCCc_ToiE4_1TKuxC8NtXa21b61wqj6iPr6jvrZI83E2Pd6uZbfoWbwOkGyJBSMV52yoYfJ8r0OCE_Tqrw66p_C98B1qmSUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622326480</pqid></control><display><type>article</type><title>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wambaugh, John F ; Wang, Anran ; Dionisio, Kathie L ; Frame, Alicia ; Egeghy, Peter ; Judson, Richard ; Setzer, R. Woodrow</creator><creatorcontrib>Wambaugh, John F ; Wang, Anran ; Dionisio, Kathie L ; Frame, Alicia ; Egeghy, Peter ; Judson, Richard ; Setzer, R. Woodrow</creatorcontrib><description>The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es503583j</identifier><identifier>PMID: 25343693</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bayes Theorem ; Biological and medical sciences ; Biomarkers - urine ; Chemicals ; Child ; Databases, Factual ; Environmental Exposure - analysis ; Environmental Pollutants - analysis ; Environmental Pollutants - chemistry ; General aspects. Methods ; Health risk assessment ; Heuristics ; Human exposure ; Humans ; Linear Models ; Medical sciences ; Nutrition Surveys ; Public health ; Toxicology ; United States</subject><ispartof>Environmental science &amp; technology, 2014-11, Vol.48 (21), p.12760-12767</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 4, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</citedby><cites>FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es503583j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es503583j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28965822$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25343693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wambaugh, John F</creatorcontrib><creatorcontrib>Wang, Anran</creatorcontrib><creatorcontrib>Dionisio, Kathie L</creatorcontrib><creatorcontrib>Frame, Alicia</creatorcontrib><creatorcontrib>Egeghy, Peter</creatorcontrib><creatorcontrib>Judson, Richard</creatorcontrib><creatorcontrib>Setzer, R. Woodrow</creatorcontrib><title>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.</description><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - urine</subject><subject>Chemicals</subject><subject>Child</subject><subject>Databases, Factual</subject><subject>Environmental Exposure - analysis</subject><subject>Environmental Pollutants - analysis</subject><subject>Environmental Pollutants - chemistry</subject><subject>General aspects. Methods</subject><subject>Health risk assessment</subject><subject>Heuristics</subject><subject>Human exposure</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Medical sciences</subject><subject>Nutrition Surveys</subject><subject>Public health</subject><subject>Toxicology</subject><subject>United States</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0MtKAzEUBuAgitbqwheQgAi6GM1lkskspVQrCLpowd2QySRtSmdSk4moT2_EekFXhwMf5_IDcITRBUYEX-rAEGWCLrfAADOCMiYY3gYDhDDNSsof98B-CEuEEKFI7II9wmhOeUkHYDax8wWcLryL88U69nCio7ehtypA4zx88NZ529s3283hJLayg-OXtQvRa9g7OO6erXddq7teruBooVur5CocgB2Tij7c1CGYXY-no0l2d39zO7q6y2RekD5rcoRzpmvOBFaNYUKipiw4ogrXhmlKpNJGitQLgWtkmto0BUlf5aXGkjM6BGefc9fePUUd-qq1QenVSnbaxVBhToqyoJyTRE_-0KWLvkvXfShCCc_ToiE4_1TKuxC8NtXa21b61wqj6iPr6jvrZI83E2Pd6uZbfoWbwOkGyJBSMV52yoYfJ8r0OCE_Tqrw66p_C98B1qmSUQ</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Wambaugh, John F</creator><creator>Wang, Anran</creator><creator>Dionisio, Kathie L</creator><creator>Frame, Alicia</creator><creator>Egeghy, Peter</creator><creator>Judson, Richard</creator><creator>Setzer, R. Woodrow</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>20141104</creationdate><title>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</title><author>Wambaugh, John F ; Wang, Anran ; Dionisio, Kathie L ; Frame, Alicia ; Egeghy, Peter ; Judson, Richard ; Setzer, R. Woodrow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - urine</topic><topic>Chemicals</topic><topic>Child</topic><topic>Databases, Factual</topic><topic>Environmental Exposure - analysis</topic><topic>Environmental Pollutants - analysis</topic><topic>Environmental Pollutants - chemistry</topic><topic>General aspects. Methods</topic><topic>Health risk assessment</topic><topic>Heuristics</topic><topic>Human exposure</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Medical sciences</topic><topic>Nutrition Surveys</topic><topic>Public health</topic><topic>Toxicology</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wambaugh, John F</creatorcontrib><creatorcontrib>Wang, Anran</creatorcontrib><creatorcontrib>Dionisio, Kathie L</creatorcontrib><creatorcontrib>Frame, Alicia</creatorcontrib><creatorcontrib>Egeghy, Peter</creatorcontrib><creatorcontrib>Judson, Richard</creatorcontrib><creatorcontrib>Setzer, R. Woodrow</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wambaugh, John F</au><au>Wang, Anran</au><au>Dionisio, Kathie L</au><au>Frame, Alicia</au><au>Egeghy, Peter</au><au>Judson, Richard</au><au>Setzer, R. Woodrow</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>48</volume><issue>21</issue><spage>12760</spage><epage>12767</epage><pages>12760-12767</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25343693</pmid><doi>10.1021/es503583j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-11, Vol.48 (21), p.12760-12767
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1627973662
source MEDLINE; American Chemical Society Journals
subjects Bayes Theorem
Biological and medical sciences
Biomarkers - urine
Chemicals
Child
Databases, Factual
Environmental Exposure - analysis
Environmental Pollutants - analysis
Environmental Pollutants - chemistry
General aspects. Methods
Health risk assessment
Heuristics
Human exposure
Humans
Linear Models
Medical sciences
Nutrition Surveys
Public health
Toxicology
United States
title High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Throughput%20Heuristics%20for%20Prioritizing%20Human%20Exposure%20to%20Environmental%20Chemicals&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wambaugh,%20John%20F&rft.date=2014-11-04&rft.volume=48&rft.issue=21&rft.spage=12760&rft.epage=12767&rft.pages=12760-12767&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es503583j&rft_dat=%3Cproquest_cross%3E1627973662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622326480&rft_id=info:pmid/25343693&rfr_iscdi=true