High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals
The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks....
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2014-11, Vol.48 (21), p.12760-12767 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12767 |
---|---|
container_issue | 21 |
container_start_page | 12760 |
container_title | Environmental science & technology |
container_volume | 48 |
creator | Wambaugh, John F Wang, Anran Dionisio, Kathie L Frame, Alicia Egeghy, Peter Judson, Richard Setzer, R. Woodrow |
description | The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals. |
doi_str_mv | 10.1021/es503583j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1627973662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627973662</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</originalsourceid><addsrcrecordid>eNpl0MtKAzEUBuAgitbqwheQgAi6GM1lkskspVQrCLpowd2QySRtSmdSk4moT2_EekFXhwMf5_IDcITRBUYEX-rAEGWCLrfAADOCMiYY3gYDhDDNSsof98B-CEuEEKFI7II9wmhOeUkHYDax8wWcLryL88U69nCio7ehtypA4zx88NZ529s3283hJLayg-OXtQvRa9g7OO6erXddq7teruBooVur5CocgB2Tij7c1CGYXY-no0l2d39zO7q6y2RekD5rcoRzpmvOBFaNYUKipiw4ogrXhmlKpNJGitQLgWtkmto0BUlf5aXGkjM6BGefc9fePUUd-qq1QenVSnbaxVBhToqyoJyTRE_-0KWLvkvXfShCCc_ToiE4_1TKuxC8NtXa21b61wqj6iPr6jvrZI83E2Pd6uZbfoWbwOkGyJBSMV52yoYfJ8r0OCE_Tqrw66p_C98B1qmSUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622326480</pqid></control><display><type>article</type><title>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Wambaugh, John F ; Wang, Anran ; Dionisio, Kathie L ; Frame, Alicia ; Egeghy, Peter ; Judson, Richard ; Setzer, R. Woodrow</creator><creatorcontrib>Wambaugh, John F ; Wang, Anran ; Dionisio, Kathie L ; Frame, Alicia ; Egeghy, Peter ; Judson, Richard ; Setzer, R. Woodrow</creatorcontrib><description>The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es503583j</identifier><identifier>PMID: 25343693</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bayes Theorem ; Biological and medical sciences ; Biomarkers - urine ; Chemicals ; Child ; Databases, Factual ; Environmental Exposure - analysis ; Environmental Pollutants - analysis ; Environmental Pollutants - chemistry ; General aspects. Methods ; Health risk assessment ; Heuristics ; Human exposure ; Humans ; Linear Models ; Medical sciences ; Nutrition Surveys ; Public health ; Toxicology ; United States</subject><ispartof>Environmental science & technology, 2014-11, Vol.48 (21), p.12760-12767</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 4, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</citedby><cites>FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es503583j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es503583j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28965822$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25343693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wambaugh, John F</creatorcontrib><creatorcontrib>Wang, Anran</creatorcontrib><creatorcontrib>Dionisio, Kathie L</creatorcontrib><creatorcontrib>Frame, Alicia</creatorcontrib><creatorcontrib>Egeghy, Peter</creatorcontrib><creatorcontrib>Judson, Richard</creatorcontrib><creatorcontrib>Setzer, R. Woodrow</creatorcontrib><title>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.</description><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - urine</subject><subject>Chemicals</subject><subject>Child</subject><subject>Databases, Factual</subject><subject>Environmental Exposure - analysis</subject><subject>Environmental Pollutants - analysis</subject><subject>Environmental Pollutants - chemistry</subject><subject>General aspects. Methods</subject><subject>Health risk assessment</subject><subject>Heuristics</subject><subject>Human exposure</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Medical sciences</subject><subject>Nutrition Surveys</subject><subject>Public health</subject><subject>Toxicology</subject><subject>United States</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0MtKAzEUBuAgitbqwheQgAi6GM1lkskspVQrCLpowd2QySRtSmdSk4moT2_EekFXhwMf5_IDcITRBUYEX-rAEGWCLrfAADOCMiYY3gYDhDDNSsof98B-CEuEEKFI7II9wmhOeUkHYDax8wWcLryL88U69nCio7ehtypA4zx88NZ529s3283hJLayg-OXtQvRa9g7OO6erXddq7teruBooVur5CocgB2Tij7c1CGYXY-no0l2d39zO7q6y2RekD5rcoRzpmvOBFaNYUKipiw4ogrXhmlKpNJGitQLgWtkmto0BUlf5aXGkjM6BGefc9fePUUd-qq1QenVSnbaxVBhToqyoJyTRE_-0KWLvkvXfShCCc_ToiE4_1TKuxC8NtXa21b61wqj6iPr6jvrZI83E2Pd6uZbfoWbwOkGyJBSMV52yoYfJ8r0OCE_Tqrw66p_C98B1qmSUQ</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Wambaugh, John F</creator><creator>Wang, Anran</creator><creator>Dionisio, Kathie L</creator><creator>Frame, Alicia</creator><creator>Egeghy, Peter</creator><creator>Judson, Richard</creator><creator>Setzer, R. Woodrow</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>20141104</creationdate><title>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</title><author>Wambaugh, John F ; Wang, Anran ; Dionisio, Kathie L ; Frame, Alicia ; Egeghy, Peter ; Judson, Richard ; Setzer, R. Woodrow</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-d40145eb6581cdf58a0d97603c1bf5e32acefa803c881b0fdbfd7200149e1a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - urine</topic><topic>Chemicals</topic><topic>Child</topic><topic>Databases, Factual</topic><topic>Environmental Exposure - analysis</topic><topic>Environmental Pollutants - analysis</topic><topic>Environmental Pollutants - chemistry</topic><topic>General aspects. Methods</topic><topic>Health risk assessment</topic><topic>Heuristics</topic><topic>Human exposure</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Medical sciences</topic><topic>Nutrition Surveys</topic><topic>Public health</topic><topic>Toxicology</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wambaugh, John F</creatorcontrib><creatorcontrib>Wang, Anran</creatorcontrib><creatorcontrib>Dionisio, Kathie L</creatorcontrib><creatorcontrib>Frame, Alicia</creatorcontrib><creatorcontrib>Egeghy, Peter</creatorcontrib><creatorcontrib>Judson, Richard</creatorcontrib><creatorcontrib>Setzer, R. Woodrow</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wambaugh, John F</au><au>Wang, Anran</au><au>Dionisio, Kathie L</au><au>Frame, Alicia</au><au>Egeghy, Peter</au><au>Judson, Richard</au><au>Setzer, R. Woodrow</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>48</volume><issue>21</issue><spage>12760</spage><epage>12767</epage><pages>12760-12767</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25343693</pmid><doi>10.1021/es503583j</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2014-11, Vol.48 (21), p.12760-12767 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1627973662 |
source | MEDLINE; American Chemical Society Journals |
subjects | Bayes Theorem Biological and medical sciences Biomarkers - urine Chemicals Child Databases, Factual Environmental Exposure - analysis Environmental Pollutants - analysis Environmental Pollutants - chemistry General aspects. Methods Health risk assessment Heuristics Human exposure Humans Linear Models Medical sciences Nutrition Surveys Public health Toxicology United States |
title | High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Throughput%20Heuristics%20for%20Prioritizing%20Human%20Exposure%20to%20Environmental%20Chemicals&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wambaugh,%20John%20F&rft.date=2014-11-04&rft.volume=48&rft.issue=21&rft.spage=12760&rft.epage=12767&rft.pages=12760-12767&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es503583j&rft_dat=%3Cproquest_cross%3E1627973662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622326480&rft_id=info:pmid/25343693&rfr_iscdi=true |