Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frog (Lithobates sylvaticus) tadpoles. II: Agriculturally relevant exposures to Roundup WeatherMax registered and Vision registered under laboratory conditions

Glyphosate-based herbicides are currently the most commonly used herbicides in the world. They have been shown to affect survival, growth, development and sexual differentiation of tadpoles under chronic laboratory exposures but this has not been investigated under more environmentally realistic con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquatic toxicology 2014-09, Vol.154, p.291-303
Hauptverfasser: Lanctot, C, Navarro-Martin, L, Robertson, C, Park, B, Jackman, P, Pauli, B D, Trudeau, V L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glyphosate-based herbicides are currently the most commonly used herbicides in the world. They have been shown to affect survival, growth, development and sexual differentiation of tadpoles under chronic laboratory exposures but this has not been investigated under more environmentally realistic conditions. The purpose of this study is (1) to determine if an agriculturally relevant exposure to Roundup WeatherMax registered , a relatively new and understudied formulation, influences the development of wood frog tadpoles (Lithobates sylvaticus) through effects on the mRNA levels of genes involved in the control of metamorphosis; (2) to compare results to the well-studied Vision registered formulation (containing the isopropylamine salt of glyphosate [IPA] and polyethoxylated tallowamine [POEA] surfactant) and to determine which ingredient(s) in the formulations are responsible for potential effects on development; and (3) to compare results to recent field studies that used a similar experimental design. In the present laboratory study, wood frog tadpoles were exposed to an agriculturally relevant application (i.e., two pulses) of Roundup WeatherMax registered and Vision registered herbicides as well as the active ingredient (IPA) and the POEA surfactant of Vision registered . Survival, development, growth, sex ratios and mRNA levels of genes involved in tadpole metamorphosis were measured. Results show that Roundup WeatherMax registered (2.89mg acid equivalent (a.e.)/L) caused 100% mortality after the first pulse. Tadpoles treated with a lower concentration of Roundup WeatherMax registered (0.21mg a.e./L) as well as Vision registered (2.89mg a.e./L), IPA and POEA had an increased condition factor (based on length and weight measures in the tadpoles) relative to controls at Gosner stage (Gs) 36/38. At Gs42, tadpoles treated with IPA and POEA had a decreased condition factor. Also at Gs42, the effect on condition factor was dependent on the sex of tadpoles and significant treatment effects were only detected in males. In most cases, treatment reduced the normal mRNA increase of key genes controlling development in tadpoles between Gs37 and Gs42, such as genes encoding thyroid hormone receptor beta in brain, glucocorticoid receptor in tail and deiodinase enzyme in brain and tail. We conclude that glyphosate-based herbicides have the potential to alter mRNA profiles during metamorphosis. However, studies in natural systems have yet to replicate these negative e
ISSN:0166-445X
DOI:10.1016/j.aquatox.2014.05.025