Trade-Offs between Survival, Longevity, and Reproduction, and Variation of Survival Tolerance in Mediterranean Bemisia tabaci after Temperature Stress

The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life his...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of insect science (Tucson, Ariz.) Ariz.), 2014-09, Vol.14 (124), p.1-11
Hauptverfasser: Lü, Zhi-Chuang, Wang, Yan-Min, Zhu, Shao-Guang, Yu, Hao, Guo, Jian-Ying, Wan, Fang-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life history traits after heat-shock selection. The results showed that survival and longevity of Mediterranean B. tabaci were decreased significantly after direct or cross temperature stress and that the number of eggs per female was not reduced significantly. Furthermore, heat-shock selection dramatically increased the survival of Mediterranean B. tabaci within two generations, and it did not significantly affect the egg number per female within five generations. These results indicated that there was a trade-off between survival, longevity, and reproduction in Mediterranean B. tabaci after temperature stress. The improvement in reproduction was costly in terms of decreased survival and longevity, and there was a fitness consequence to temperature stress. In addition, heat tolerance in Mediterranean B. tabaci increased substantially after selection by heat shock, indicating a considerable variation for survival tolerance in this species. This information could help us better understand the thermal biology of Mediterranean B. tabaci within the context of climate change.
ISSN:1536-2442
1536-2442
DOI:10.1673/031.014.124