Optical freezing of charge motion in an organic conductor
Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E ( ω ), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a cha...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-11, Vol.5 (1), p.5528-5528, Article 5528 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5528 |
---|---|
container_issue | 1 |
container_start_page | 5528 |
container_title | Nature communications |
container_volume | 5 |
creator | Ishikawa, Takahiro Sagae, Yuto Naitoh, Yota Kawakami, Yohei Itoh, Hirotake Yamamoto, Kaoru Yakushi, Kyuya Kishida, Hideo Sasaki, Takahiko Ishihara, Sumio Tanaka, Yasuhiro Yonemitsu, Kenji Iwai, Shinichiro |
description | Dynamical localization, that is, reduction of the intersite electronic transfer integral
t
by an alternating electric field,
E
(
ω
), is a promising strategy for controlling strongly correlated systems with a competing energy balance between
t
and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm
−1
instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene)
2
I
3
. A large reflectivity change of >25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of
t
driven by the strong, high-frequency (
ω
≧
t
/
ħ
) electric field.
In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET)
2
I
3
with ultrashort pulses leads to a counter-intuitive freezing of the electron motion. |
doi_str_mv | 10.1038/ncomms6528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1627955054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3505413221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</originalsourceid><addsrcrecordid>eNpl0E1LwzAYB_AgihtzFz-AFLyIUs1rkx5l-AbCDnovafq0drTJTNqDfnqjmzo0lwSeH_88_BE6JviSYKaurHF9HzJB1R6aUsxJSiRl-zvvCZqHsMLxsJwozg_RhApOpOT5FOXL9dAa3SW1B3hvbZO4OjEv2jeQ9G5onU1am2ibON9o25rEOFuNZnD-CB3Uugsw394z9HR787y4Tx-Xdw-L68fUcMGGVBJSl4YCYZQDETLHlDGRlSWuNQVVldKUEhiJMwPKYKKIggxyU1OWVWyGzjapa-9eRwhD0bfBQNdpC24MBcmozIXAgkd6-oeu3Oht3O1LYUXiDlGdb5TxLgQPdbH2ba_9W0Fw8dlo8dtoxCfbyLHsofqh3_1FcLEBIY5sA37nz_9xHwq1fxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627081132</pqid></control><display><type>article</type><title>Optical freezing of charge motion in an organic conductor</title><source>Springer Nature OA/Free Journals</source><creator>Ishikawa, Takahiro ; Sagae, Yuto ; Naitoh, Yota ; Kawakami, Yohei ; Itoh, Hirotake ; Yamamoto, Kaoru ; Yakushi, Kyuya ; Kishida, Hideo ; Sasaki, Takahiko ; Ishihara, Sumio ; Tanaka, Yasuhiro ; Yonemitsu, Kenji ; Iwai, Shinichiro</creator><creatorcontrib>Ishikawa, Takahiro ; Sagae, Yuto ; Naitoh, Yota ; Kawakami, Yohei ; Itoh, Hirotake ; Yamamoto, Kaoru ; Yakushi, Kyuya ; Kishida, Hideo ; Sasaki, Takahiko ; Ishihara, Sumio ; Tanaka, Yasuhiro ; Yonemitsu, Kenji ; Iwai, Shinichiro</creatorcontrib><description>Dynamical localization, that is, reduction of the intersite electronic transfer integral
t
by an alternating electric field,
E
(
ω
), is a promising strategy for controlling strongly correlated systems with a competing energy balance between
t
and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm
−1
instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene)
2
I
3
. A large reflectivity change of >25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of
t
driven by the strong, high-frequency (
ω
≧
t
/
ħ
) electric field.
In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET)
2
I
3
with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6528</identifier><identifier>PMID: 25417749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/624/400 ; Applied physics ; Energy ; Equilibrium ; Humanities and Social Sciences ; Localization ; multidisciplinary ; Phase transitions ; Science ; Science (multidisciplinary) ; Temperature</subject><ispartof>Nature communications, 2014-11, Vol.5 (1), p.5528-5528, Article 5528</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</citedby><cites>FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms6528$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms6528$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6528$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25417749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishikawa, Takahiro</creatorcontrib><creatorcontrib>Sagae, Yuto</creatorcontrib><creatorcontrib>Naitoh, Yota</creatorcontrib><creatorcontrib>Kawakami, Yohei</creatorcontrib><creatorcontrib>Itoh, Hirotake</creatorcontrib><creatorcontrib>Yamamoto, Kaoru</creatorcontrib><creatorcontrib>Yakushi, Kyuya</creatorcontrib><creatorcontrib>Kishida, Hideo</creatorcontrib><creatorcontrib>Sasaki, Takahiko</creatorcontrib><creatorcontrib>Ishihara, Sumio</creatorcontrib><creatorcontrib>Tanaka, Yasuhiro</creatorcontrib><creatorcontrib>Yonemitsu, Kenji</creatorcontrib><creatorcontrib>Iwai, Shinichiro</creatorcontrib><title>Optical freezing of charge motion in an organic conductor</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Dynamical localization, that is, reduction of the intersite electronic transfer integral
t
by an alternating electric field,
E
(
ω
), is a promising strategy for controlling strongly correlated systems with a competing energy balance between
t
and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm
−1
instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene)
2
I
3
. A large reflectivity change of >25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of
t
driven by the strong, high-frequency (
ω
≧
t
/
ħ
) electric field.
In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET)
2
I
3
with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.</description><subject>639/301/119/995</subject><subject>639/624/400</subject><subject>Applied physics</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0E1LwzAYB_AgihtzFz-AFLyIUs1rkx5l-AbCDnovafq0drTJTNqDfnqjmzo0lwSeH_88_BE6JviSYKaurHF9HzJB1R6aUsxJSiRl-zvvCZqHsMLxsJwozg_RhApOpOT5FOXL9dAa3SW1B3hvbZO4OjEv2jeQ9G5onU1am2ibON9o25rEOFuNZnD-CB3Uugsw394z9HR787y4Tx-Xdw-L68fUcMGGVBJSl4YCYZQDETLHlDGRlSWuNQVVldKUEhiJMwPKYKKIggxyU1OWVWyGzjapa-9eRwhD0bfBQNdpC24MBcmozIXAgkd6-oeu3Oht3O1LYUXiDlGdb5TxLgQPdbH2ba_9W0Fw8dlo8dtoxCfbyLHsofqh3_1FcLEBIY5sA37nz_9xHwq1fxY</recordid><startdate>20141124</startdate><enddate>20141124</enddate><creator>Ishikawa, Takahiro</creator><creator>Sagae, Yuto</creator><creator>Naitoh, Yota</creator><creator>Kawakami, Yohei</creator><creator>Itoh, Hirotake</creator><creator>Yamamoto, Kaoru</creator><creator>Yakushi, Kyuya</creator><creator>Kishida, Hideo</creator><creator>Sasaki, Takahiko</creator><creator>Ishihara, Sumio</creator><creator>Tanaka, Yasuhiro</creator><creator>Yonemitsu, Kenji</creator><creator>Iwai, Shinichiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141124</creationdate><title>Optical freezing of charge motion in an organic conductor</title><author>Ishikawa, Takahiro ; Sagae, Yuto ; Naitoh, Yota ; Kawakami, Yohei ; Itoh, Hirotake ; Yamamoto, Kaoru ; Yakushi, Kyuya ; Kishida, Hideo ; Sasaki, Takahiko ; Ishihara, Sumio ; Tanaka, Yasuhiro ; Yonemitsu, Kenji ; Iwai, Shinichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/995</topic><topic>639/624/400</topic><topic>Applied physics</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Takahiro</creatorcontrib><creatorcontrib>Sagae, Yuto</creatorcontrib><creatorcontrib>Naitoh, Yota</creatorcontrib><creatorcontrib>Kawakami, Yohei</creatorcontrib><creatorcontrib>Itoh, Hirotake</creatorcontrib><creatorcontrib>Yamamoto, Kaoru</creatorcontrib><creatorcontrib>Yakushi, Kyuya</creatorcontrib><creatorcontrib>Kishida, Hideo</creatorcontrib><creatorcontrib>Sasaki, Takahiko</creatorcontrib><creatorcontrib>Ishihara, Sumio</creatorcontrib><creatorcontrib>Tanaka, Yasuhiro</creatorcontrib><creatorcontrib>Yonemitsu, Kenji</creatorcontrib><creatorcontrib>Iwai, Shinichiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishikawa, Takahiro</au><au>Sagae, Yuto</au><au>Naitoh, Yota</au><au>Kawakami, Yohei</au><au>Itoh, Hirotake</au><au>Yamamoto, Kaoru</au><au>Yakushi, Kyuya</au><au>Kishida, Hideo</au><au>Sasaki, Takahiko</au><au>Ishihara, Sumio</au><au>Tanaka, Yasuhiro</au><au>Yonemitsu, Kenji</au><au>Iwai, Shinichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical freezing of charge motion in an organic conductor</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-11-24</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5528</spage><epage>5528</epage><pages>5528-5528</pages><artnum>5528</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Dynamical localization, that is, reduction of the intersite electronic transfer integral
t
by an alternating electric field,
E
(
ω
), is a promising strategy for controlling strongly correlated systems with a competing energy balance between
t
and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm
−1
instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene)
2
I
3
. A large reflectivity change of >25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of
t
driven by the strong, high-frequency (
ω
≧
t
/
ħ
) electric field.
In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET)
2
I
3
with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25417749</pmid><doi>10.1038/ncomms6528</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-11, Vol.5 (1), p.5528-5528, Article 5528 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1627955054 |
source | Springer Nature OA/Free Journals |
subjects | 639/301/119/995 639/624/400 Applied physics Energy Equilibrium Humanities and Social Sciences Localization multidisciplinary Phase transitions Science Science (multidisciplinary) Temperature |
title | Optical freezing of charge motion in an organic conductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20freezing%20of%20charge%20motion%20in%20an%20organic%20conductor&rft.jtitle=Nature%20communications&rft.au=Ishikawa,%20Takahiro&rft.date=2014-11-24&rft.volume=5&rft.issue=1&rft.spage=5528&rft.epage=5528&rft.pages=5528-5528&rft.artnum=5528&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6528&rft_dat=%3Cproquest_C6C%3E3505413221%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627081132&rft_id=info:pmid/25417749&rfr_iscdi=true |