Optical freezing of charge motion in an organic conductor

Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E ( ω ), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-11, Vol.5 (1), p.5528-5528, Article 5528
Hauptverfasser: Ishikawa, Takahiro, Sagae, Yuto, Naitoh, Yota, Kawakami, Yohei, Itoh, Hirotake, Yamamoto, Kaoru, Yakushi, Kyuya, Kishida, Hideo, Sasaki, Takahiko, Ishihara, Sumio, Tanaka, Yasuhiro, Yonemitsu, Kenji, Iwai, Shinichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5528
container_issue 1
container_start_page 5528
container_title Nature communications
container_volume 5
creator Ishikawa, Takahiro
Sagae, Yuto
Naitoh, Yota
Kawakami, Yohei
Itoh, Hirotake
Yamamoto, Kaoru
Yakushi, Kyuya
Kishida, Hideo
Sasaki, Takahiko
Ishihara, Sumio
Tanaka, Yasuhiro
Yonemitsu, Kenji
Iwai, Shinichiro
description Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E ( ω ), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm −1 instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene) 2 I 3 . A large reflectivity change of >25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of t driven by the strong, high-frequency ( ω ≧ t / ħ ) electric field. In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET) 2 I 3 with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.
doi_str_mv 10.1038/ncomms6528
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1627955054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3505413221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</originalsourceid><addsrcrecordid>eNpl0E1LwzAYB_AgihtzFz-AFLyIUs1rkx5l-AbCDnovafq0drTJTNqDfnqjmzo0lwSeH_88_BE6JviSYKaurHF9HzJB1R6aUsxJSiRl-zvvCZqHsMLxsJwozg_RhApOpOT5FOXL9dAa3SW1B3hvbZO4OjEv2jeQ9G5onU1am2ibON9o25rEOFuNZnD-CB3Uugsw394z9HR787y4Tx-Xdw-L68fUcMGGVBJSl4YCYZQDETLHlDGRlSWuNQVVldKUEhiJMwPKYKKIggxyU1OWVWyGzjapa-9eRwhD0bfBQNdpC24MBcmozIXAgkd6-oeu3Oht3O1LYUXiDlGdb5TxLgQPdbH2ba_9W0Fw8dlo8dtoxCfbyLHsofqh3_1FcLEBIY5sA37nz_9xHwq1fxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627081132</pqid></control><display><type>article</type><title>Optical freezing of charge motion in an organic conductor</title><source>Springer Nature OA/Free Journals</source><creator>Ishikawa, Takahiro ; Sagae, Yuto ; Naitoh, Yota ; Kawakami, Yohei ; Itoh, Hirotake ; Yamamoto, Kaoru ; Yakushi, Kyuya ; Kishida, Hideo ; Sasaki, Takahiko ; Ishihara, Sumio ; Tanaka, Yasuhiro ; Yonemitsu, Kenji ; Iwai, Shinichiro</creator><creatorcontrib>Ishikawa, Takahiro ; Sagae, Yuto ; Naitoh, Yota ; Kawakami, Yohei ; Itoh, Hirotake ; Yamamoto, Kaoru ; Yakushi, Kyuya ; Kishida, Hideo ; Sasaki, Takahiko ; Ishihara, Sumio ; Tanaka, Yasuhiro ; Yonemitsu, Kenji ; Iwai, Shinichiro</creatorcontrib><description>Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E ( ω ), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm −1 instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene) 2 I 3 . A large reflectivity change of &gt;25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of t driven by the strong, high-frequency ( ω ≧ t / ħ ) electric field. In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET) 2 I 3 with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6528</identifier><identifier>PMID: 25417749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/624/400 ; Applied physics ; Energy ; Equilibrium ; Humanities and Social Sciences ; Localization ; multidisciplinary ; Phase transitions ; Science ; Science (multidisciplinary) ; Temperature</subject><ispartof>Nature communications, 2014-11, Vol.5 (1), p.5528-5528, Article 5528</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</citedby><cites>FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms6528$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms6528$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6528$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25417749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishikawa, Takahiro</creatorcontrib><creatorcontrib>Sagae, Yuto</creatorcontrib><creatorcontrib>Naitoh, Yota</creatorcontrib><creatorcontrib>Kawakami, Yohei</creatorcontrib><creatorcontrib>Itoh, Hirotake</creatorcontrib><creatorcontrib>Yamamoto, Kaoru</creatorcontrib><creatorcontrib>Yakushi, Kyuya</creatorcontrib><creatorcontrib>Kishida, Hideo</creatorcontrib><creatorcontrib>Sasaki, Takahiko</creatorcontrib><creatorcontrib>Ishihara, Sumio</creatorcontrib><creatorcontrib>Tanaka, Yasuhiro</creatorcontrib><creatorcontrib>Yonemitsu, Kenji</creatorcontrib><creatorcontrib>Iwai, Shinichiro</creatorcontrib><title>Optical freezing of charge motion in an organic conductor</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E ( ω ), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm −1 instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene) 2 I 3 . A large reflectivity change of &gt;25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of t driven by the strong, high-frequency ( ω ≧ t / ħ ) electric field. In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET) 2 I 3 with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.</description><subject>639/301/119/995</subject><subject>639/624/400</subject><subject>Applied physics</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0E1LwzAYB_AgihtzFz-AFLyIUs1rkx5l-AbCDnovafq0drTJTNqDfnqjmzo0lwSeH_88_BE6JviSYKaurHF9HzJB1R6aUsxJSiRl-zvvCZqHsMLxsJwozg_RhApOpOT5FOXL9dAa3SW1B3hvbZO4OjEv2jeQ9G5onU1am2ibON9o25rEOFuNZnD-CB3Uugsw394z9HR787y4Tx-Xdw-L68fUcMGGVBJSl4YCYZQDETLHlDGRlSWuNQVVldKUEhiJMwPKYKKIggxyU1OWVWyGzjapa-9eRwhD0bfBQNdpC24MBcmozIXAgkd6-oeu3Oht3O1LYUXiDlGdb5TxLgQPdbH2ba_9W0Fw8dlo8dtoxCfbyLHsofqh3_1FcLEBIY5sA37nz_9xHwq1fxY</recordid><startdate>20141124</startdate><enddate>20141124</enddate><creator>Ishikawa, Takahiro</creator><creator>Sagae, Yuto</creator><creator>Naitoh, Yota</creator><creator>Kawakami, Yohei</creator><creator>Itoh, Hirotake</creator><creator>Yamamoto, Kaoru</creator><creator>Yakushi, Kyuya</creator><creator>Kishida, Hideo</creator><creator>Sasaki, Takahiko</creator><creator>Ishihara, Sumio</creator><creator>Tanaka, Yasuhiro</creator><creator>Yonemitsu, Kenji</creator><creator>Iwai, Shinichiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141124</creationdate><title>Optical freezing of charge motion in an organic conductor</title><author>Ishikawa, Takahiro ; Sagae, Yuto ; Naitoh, Yota ; Kawakami, Yohei ; Itoh, Hirotake ; Yamamoto, Kaoru ; Yakushi, Kyuya ; Kishida, Hideo ; Sasaki, Takahiko ; Ishihara, Sumio ; Tanaka, Yasuhiro ; Yonemitsu, Kenji ; Iwai, Shinichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-711fbc2e1324e1579023356bb0fa2e8db7cb7e31e15ce8c01818e6e9cf236d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/995</topic><topic>639/624/400</topic><topic>Applied physics</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Takahiro</creatorcontrib><creatorcontrib>Sagae, Yuto</creatorcontrib><creatorcontrib>Naitoh, Yota</creatorcontrib><creatorcontrib>Kawakami, Yohei</creatorcontrib><creatorcontrib>Itoh, Hirotake</creatorcontrib><creatorcontrib>Yamamoto, Kaoru</creatorcontrib><creatorcontrib>Yakushi, Kyuya</creatorcontrib><creatorcontrib>Kishida, Hideo</creatorcontrib><creatorcontrib>Sasaki, Takahiko</creatorcontrib><creatorcontrib>Ishihara, Sumio</creatorcontrib><creatorcontrib>Tanaka, Yasuhiro</creatorcontrib><creatorcontrib>Yonemitsu, Kenji</creatorcontrib><creatorcontrib>Iwai, Shinichiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishikawa, Takahiro</au><au>Sagae, Yuto</au><au>Naitoh, Yota</au><au>Kawakami, Yohei</au><au>Itoh, Hirotake</au><au>Yamamoto, Kaoru</au><au>Yakushi, Kyuya</au><au>Kishida, Hideo</au><au>Sasaki, Takahiko</au><au>Ishihara, Sumio</au><au>Tanaka, Yasuhiro</au><au>Yonemitsu, Kenji</au><au>Iwai, Shinichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical freezing of charge motion in an organic conductor</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-11-24</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5528</spage><epage>5528</epage><pages>5528-5528</pages><artnum>5528</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E ( ω ), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm −1 instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor α-(bis[ethylenedithio]-tetrathiafulvalene) 2 I 3 . A large reflectivity change of &gt;25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the ~10% reduction of t driven by the strong, high-frequency ( ω ≧ t / ħ ) electric field. In strongly correlated systems, the material properties can be drastically altered through subtle external perturbations. Here, the authors show that photoexcitation of the organic conductor α-(ET) 2 I 3 with ultrashort pulses leads to a counter-intuitive freezing of the electron motion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25417749</pmid><doi>10.1038/ncomms6528</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-11, Vol.5 (1), p.5528-5528, Article 5528
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1627955054
source Springer Nature OA/Free Journals
subjects 639/301/119/995
639/624/400
Applied physics
Energy
Equilibrium
Humanities and Social Sciences
Localization
multidisciplinary
Phase transitions
Science
Science (multidisciplinary)
Temperature
title Optical freezing of charge motion in an organic conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20freezing%20of%20charge%20motion%20in%20an%20organic%20conductor&rft.jtitle=Nature%20communications&rft.au=Ishikawa,%20Takahiro&rft.date=2014-11-24&rft.volume=5&rft.issue=1&rft.spage=5528&rft.epage=5528&rft.pages=5528-5528&rft.artnum=5528&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6528&rft_dat=%3Cproquest_C6C%3E3505413221%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627081132&rft_id=info:pmid/25417749&rfr_iscdi=true