Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques

This study aims to detect colorectal cancer with near-infrared Raman spectroscopy and feature selection techniques. A total of 306 Raman spectra of colorectal cancer tissues and normal tissues are acquired from 44 colorectal cancer patients. Five diagnostically important Raman bands in the regions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2014-10, Vol.22 (21), p.25895-25908
Hauptverfasser: Li, Shaoxin, Chen, Gong, Zhang, Yanjiao, Guo, Zhouyi, Liu, Zhiming, Xu, Junfa, Li, Xueqiang, Lin, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25908
container_issue 21
container_start_page 25895
container_title Optics express
container_volume 22
creator Li, Shaoxin
Chen, Gong
Zhang, Yanjiao
Guo, Zhouyi
Liu, Zhiming
Xu, Junfa
Li, Xueqiang
Lin, Lin
description This study aims to detect colorectal cancer with near-infrared Raman spectroscopy and feature selection techniques. A total of 306 Raman spectra of colorectal cancer tissues and normal tissues are acquired from 44 colorectal cancer patients. Five diagnostically important Raman bands in the regions of 815-830, 935-945, 1131-1141, 1447-1457 and 1665-1675 cm(-1) related to proteins, nucleic acids and lipids of tissues are identified with the ant colony optimization (ACO) and support vector machine (SVM). The diagnostic models built with the identified Raman bands provide a diagnostic accuracy of 93.2% for identifying colorectal cancer from normal Raman spectroscopy. The study demonstrates that the Raman spectroscopy associated with ACO-SVM diagnostic algorithms has great potential to characterize and diagnose colorectal cancer.
doi_str_mv 10.1364/OE.22.025895
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1626161904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1626161904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-141288760829e5962886f9a700fe73beac6082fe798ac061468d62cc1f6f57423</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EoqWwMaOMDKTYjuPEI6oKVKpUCcEcuZczDcpHsZ2h_PU4pCCm-3g_vdM9Qq4ZnbNEivvNcs75nPI0V-kJmTKqRCxonp3-6yfkwrkPSpnIVHZOJjwVlEnOpsSuSmx9ZSrQvuraSLdlBDttNXi01de47EwEXd1ZBK_rCHQLaKPeVe179KIb3UZuHyTbOej2hx8Lg9r3FiOHdVAGD4-wa6vPHt0lOTO6dnh1rDPy9rh8XTzH683TavGwjiFRqY-ZYDzPM0lzrjBVMgzSKJ1RajBLtqhhkEKvcg1UMiHzUnIAZqRJM8GTGbkdffe2G-76oqkcYF3rFrveFSEAySRTVAT0bkQhPOEsmmJvq0bbQ8FoMaRcbJYF58WYcsBvjs79tsHyD_6NNfkGGHR44w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626161904</pqid></control><display><type>article</type><title>Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Shaoxin ; Chen, Gong ; Zhang, Yanjiao ; Guo, Zhouyi ; Liu, Zhiming ; Xu, Junfa ; Li, Xueqiang ; Lin, Lin</creator><creatorcontrib>Li, Shaoxin ; Chen, Gong ; Zhang, Yanjiao ; Guo, Zhouyi ; Liu, Zhiming ; Xu, Junfa ; Li, Xueqiang ; Lin, Lin</creatorcontrib><description>This study aims to detect colorectal cancer with near-infrared Raman spectroscopy and feature selection techniques. A total of 306 Raman spectra of colorectal cancer tissues and normal tissues are acquired from 44 colorectal cancer patients. Five diagnostically important Raman bands in the regions of 815-830, 935-945, 1131-1141, 1447-1457 and 1665-1675 cm(-1) related to proteins, nucleic acids and lipids of tissues are identified with the ant colony optimization (ACO) and support vector machine (SVM). The diagnostic models built with the identified Raman bands provide a diagnostic accuracy of 93.2% for identifying colorectal cancer from normal Raman spectroscopy. The study demonstrates that the Raman spectroscopy associated with ACO-SVM diagnostic algorithms has great potential to characterize and diagnose colorectal cancer.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.22.025895</identifier><identifier>PMID: 25401621</identifier><language>eng</language><publisher>United States</publisher><subject>Adenocarcinoma - diagnosis ; Adenocarcinoma - pathology ; Algorithms ; Colorectal Neoplasms - diagnosis ; Colorectal Neoplasms - pathology ; Female ; Humans ; Imaging, Three-Dimensional ; Male ; Middle Aged ; ROC Curve ; Spectrum Analysis, Raman - methods ; Support Vector Machine</subject><ispartof>Optics express, 2014-10, Vol.22 (21), p.25895-25908</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-141288760829e5962886f9a700fe73beac6082fe798ac061468d62cc1f6f57423</citedby><cites>FETCH-LOGICAL-c395t-141288760829e5962886f9a700fe73beac6082fe798ac061468d62cc1f6f57423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25401621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shaoxin</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Zhang, Yanjiao</creatorcontrib><creatorcontrib>Guo, Zhouyi</creatorcontrib><creatorcontrib>Liu, Zhiming</creatorcontrib><creatorcontrib>Xu, Junfa</creatorcontrib><creatorcontrib>Li, Xueqiang</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><title>Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>This study aims to detect colorectal cancer with near-infrared Raman spectroscopy and feature selection techniques. A total of 306 Raman spectra of colorectal cancer tissues and normal tissues are acquired from 44 colorectal cancer patients. Five diagnostically important Raman bands in the regions of 815-830, 935-945, 1131-1141, 1447-1457 and 1665-1675 cm(-1) related to proteins, nucleic acids and lipids of tissues are identified with the ant colony optimization (ACO) and support vector machine (SVM). The diagnostic models built with the identified Raman bands provide a diagnostic accuracy of 93.2% for identifying colorectal cancer from normal Raman spectroscopy. The study demonstrates that the Raman spectroscopy associated with ACO-SVM diagnostic algorithms has great potential to characterize and diagnose colorectal cancer.</description><subject>Adenocarcinoma - diagnosis</subject><subject>Adenocarcinoma - pathology</subject><subject>Algorithms</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Female</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Male</subject><subject>Middle Aged</subject><subject>ROC Curve</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Support Vector Machine</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkL1PwzAQxS0EoqWwMaOMDKTYjuPEI6oKVKpUCcEcuZczDcpHsZ2h_PU4pCCm-3g_vdM9Qq4ZnbNEivvNcs75nPI0V-kJmTKqRCxonp3-6yfkwrkPSpnIVHZOJjwVlEnOpsSuSmx9ZSrQvuraSLdlBDttNXi01de47EwEXd1ZBK_rCHQLaKPeVe179KIb3UZuHyTbOej2hx8Lg9r3FiOHdVAGD4-wa6vPHt0lOTO6dnh1rDPy9rh8XTzH683TavGwjiFRqY-ZYDzPM0lzrjBVMgzSKJ1RajBLtqhhkEKvcg1UMiHzUnIAZqRJM8GTGbkdffe2G-76oqkcYF3rFrveFSEAySRTVAT0bkQhPOEsmmJvq0bbQ8FoMaRcbJYF58WYcsBvjs79tsHyD_6NNfkGGHR44w</recordid><startdate>20141020</startdate><enddate>20141020</enddate><creator>Li, Shaoxin</creator><creator>Chen, Gong</creator><creator>Zhang, Yanjiao</creator><creator>Guo, Zhouyi</creator><creator>Liu, Zhiming</creator><creator>Xu, Junfa</creator><creator>Li, Xueqiang</creator><creator>Lin, Lin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141020</creationdate><title>Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques</title><author>Li, Shaoxin ; Chen, Gong ; Zhang, Yanjiao ; Guo, Zhouyi ; Liu, Zhiming ; Xu, Junfa ; Li, Xueqiang ; Lin, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-141288760829e5962886f9a700fe73beac6082fe798ac061468d62cc1f6f57423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenocarcinoma - diagnosis</topic><topic>Adenocarcinoma - pathology</topic><topic>Algorithms</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Female</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Male</topic><topic>Middle Aged</topic><topic>ROC Curve</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shaoxin</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Zhang, Yanjiao</creatorcontrib><creatorcontrib>Guo, Zhouyi</creatorcontrib><creatorcontrib>Liu, Zhiming</creatorcontrib><creatorcontrib>Xu, Junfa</creatorcontrib><creatorcontrib>Li, Xueqiang</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shaoxin</au><au>Chen, Gong</au><au>Zhang, Yanjiao</au><au>Guo, Zhouyi</au><au>Liu, Zhiming</au><au>Xu, Junfa</au><au>Li, Xueqiang</au><au>Lin, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2014-10-20</date><risdate>2014</risdate><volume>22</volume><issue>21</issue><spage>25895</spage><epage>25908</epage><pages>25895-25908</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>This study aims to detect colorectal cancer with near-infrared Raman spectroscopy and feature selection techniques. A total of 306 Raman spectra of colorectal cancer tissues and normal tissues are acquired from 44 colorectal cancer patients. Five diagnostically important Raman bands in the regions of 815-830, 935-945, 1131-1141, 1447-1457 and 1665-1675 cm(-1) related to proteins, nucleic acids and lipids of tissues are identified with the ant colony optimization (ACO) and support vector machine (SVM). The diagnostic models built with the identified Raman bands provide a diagnostic accuracy of 93.2% for identifying colorectal cancer from normal Raman spectroscopy. The study demonstrates that the Raman spectroscopy associated with ACO-SVM diagnostic algorithms has great potential to characterize and diagnose colorectal cancer.</abstract><cop>United States</cop><pmid>25401621</pmid><doi>10.1364/OE.22.025895</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2014-10, Vol.22 (21), p.25895-25908
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_1626161904
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adenocarcinoma - diagnosis
Adenocarcinoma - pathology
Algorithms
Colorectal Neoplasms - diagnosis
Colorectal Neoplasms - pathology
Female
Humans
Imaging, Three-Dimensional
Male
Middle Aged
ROC Curve
Spectrum Analysis, Raman - methods
Support Vector Machine
title Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20characterization%20of%20colorectal%20cancer%20using%20Raman%20spectroscopy%20and%20feature%20selection%20techniques&rft.jtitle=Optics%20express&rft.au=Li,%20Shaoxin&rft.date=2014-10-20&rft.volume=22&rft.issue=21&rft.spage=25895&rft.epage=25908&rft.pages=25895-25908&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.22.025895&rft_dat=%3Cproquest_cross%3E1626161904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626161904&rft_id=info:pmid/25401621&rfr_iscdi=true