Mechanisms of Photoconductivity in Atomically Thin MoS2

Atomically thin transition metal dichalcogenides have emerged as promising candidates for sensitive photodetection. Here, we report a photoconductivity study of biased mono- and bilayer molybdenum disulfide field-effect transistors. We identify photovoltaic and photoconductive effects, which both sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-11, Vol.14 (11), p.6165-6170
Hauptverfasser: Furchi, Marco M, Polyushkin, Dmitry K, Pospischil, Andreas, Mueller, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6170
container_issue 11
container_start_page 6165
container_title Nano letters
container_volume 14
creator Furchi, Marco M
Polyushkin, Dmitry K
Pospischil, Andreas
Mueller, Thomas
description Atomically thin transition metal dichalcogenides have emerged as promising candidates for sensitive photodetection. Here, we report a photoconductivity study of biased mono- and bilayer molybdenum disulfide field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photogain. The photovoltaic effect is described as a shift in transistor threshold voltage due to charge transfer from the channel to nearby molecules, including SiO2 surface-bound water. The photoconductive effect is attributed to the trapping of carriers in band tail states in the molybdenum disulfide itself. A simple model is presented that reproduces our experimental observations, such as the dependence on incident optical power and gate voltage. Our findings offer design and engineering strategies for atomically thin molybdenum disulfide photodetectors, and we anticipate that the results are generalizable to other transition metal dichalcogenides as well.
doi_str_mv 10.1021/nl502339q
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1624933771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1624933771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-34bd6182d7cf3011c9c2204ee332ac895f7fc9fa5d10cb20d41d0c9da46cbc3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMobk4v_APSG8Gb6knStM3lGPMDNhS2-5CepCyjbbamFfbvrTi3q3MOPLyH5yXknsIzBUZfmkoA41zuL8iYCg5xKiW7PO15MiI3IWwBQHIB12TEBJNSUDEm2dLiRjcu1CHyZfS18Z1H35geO_ftukPkmmja-dqhrqpDtN4M99Kv2C25KnUV7N1xTsjqdb6evceLz7eP2XQR6-FHF_OkMCnNmcmw5EApSmQMEms5ZxpzKcqsRFlqYShgwcAk1ABKo5MUC-QT8vSXumv9vrehU7ULaKtKN9b3QdGUJZLzLKMD-nBE-6K2Ru1aV-v2oP5VB-DxCOgwyJStbtCFMychB5nSM6cxqK3v22bwUxTUb9XqVDX_ATxwbNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624933771</pqid></control><display><type>article</type><title>Mechanisms of Photoconductivity in Atomically Thin MoS2</title><source>ACS Publications</source><creator>Furchi, Marco M ; Polyushkin, Dmitry K ; Pospischil, Andreas ; Mueller, Thomas</creator><creatorcontrib>Furchi, Marco M ; Polyushkin, Dmitry K ; Pospischil, Andreas ; Mueller, Thomas</creatorcontrib><description>Atomically thin transition metal dichalcogenides have emerged as promising candidates for sensitive photodetection. Here, we report a photoconductivity study of biased mono- and bilayer molybdenum disulfide field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photogain. The photovoltaic effect is described as a shift in transistor threshold voltage due to charge transfer from the channel to nearby molecules, including SiO2 surface-bound water. The photoconductive effect is attributed to the trapping of carriers in band tail states in the molybdenum disulfide itself. A simple model is presented that reproduces our experimental observations, such as the dependence on incident optical power and gate voltage. Our findings offer design and engineering strategies for atomically thin molybdenum disulfide photodetectors, and we anticipate that the results are generalizable to other transition metal dichalcogenides as well.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl502339q</identifier><identifier>PMID: 25299515</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Optoelectronic devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Transistors</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6165-6170</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl502339q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl502339q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29080961$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25299515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furchi, Marco M</creatorcontrib><creatorcontrib>Polyushkin, Dmitry K</creatorcontrib><creatorcontrib>Pospischil, Andreas</creatorcontrib><creatorcontrib>Mueller, Thomas</creatorcontrib><title>Mechanisms of Photoconductivity in Atomically Thin MoS2</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Atomically thin transition metal dichalcogenides have emerged as promising candidates for sensitive photodetection. Here, we report a photoconductivity study of biased mono- and bilayer molybdenum disulfide field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photogain. The photovoltaic effect is described as a shift in transistor threshold voltage due to charge transfer from the channel to nearby molecules, including SiO2 surface-bound water. The photoconductive effect is attributed to the trapping of carriers in band tail states in the molybdenum disulfide itself. A simple model is presented that reproduces our experimental observations, such as the dependence on incident optical power and gate voltage. Our findings offer design and engineering strategies for atomically thin molybdenum disulfide photodetectors, and we anticipate that the results are generalizable to other transition metal dichalcogenides as well.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Optoelectronic devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Transistors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMobk4v_APSG8Gb6knStM3lGPMDNhS2-5CepCyjbbamFfbvrTi3q3MOPLyH5yXknsIzBUZfmkoA41zuL8iYCg5xKiW7PO15MiI3IWwBQHIB12TEBJNSUDEm2dLiRjcu1CHyZfS18Z1H35geO_ftukPkmmja-dqhrqpDtN4M99Kv2C25KnUV7N1xTsjqdb6evceLz7eP2XQR6-FHF_OkMCnNmcmw5EApSmQMEms5ZxpzKcqsRFlqYShgwcAk1ABKo5MUC-QT8vSXumv9vrehU7ULaKtKN9b3QdGUJZLzLKMD-nBE-6K2Ru1aV-v2oP5VB-DxCOgwyJStbtCFMychB5nSM6cxqK3v22bwUxTUb9XqVDX_ATxwbNA</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Furchi, Marco M</creator><creator>Polyushkin, Dmitry K</creator><creator>Pospischil, Andreas</creator><creator>Mueller, Thomas</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20141112</creationdate><title>Mechanisms of Photoconductivity in Atomically Thin MoS2</title><author>Furchi, Marco M ; Polyushkin, Dmitry K ; Pospischil, Andreas ; Mueller, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-34bd6182d7cf3011c9c2204ee332ac895f7fc9fa5d10cb20d41d0c9da46cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Optoelectronic devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furchi, Marco M</creatorcontrib><creatorcontrib>Polyushkin, Dmitry K</creatorcontrib><creatorcontrib>Pospischil, Andreas</creatorcontrib><creatorcontrib>Mueller, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furchi, Marco M</au><au>Polyushkin, Dmitry K</au><au>Pospischil, Andreas</au><au>Mueller, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Photoconductivity in Atomically Thin MoS2</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6165</spage><epage>6170</epage><pages>6165-6170</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Atomically thin transition metal dichalcogenides have emerged as promising candidates for sensitive photodetection. Here, we report a photoconductivity study of biased mono- and bilayer molybdenum disulfide field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photogain. The photovoltaic effect is described as a shift in transistor threshold voltage due to charge transfer from the channel to nearby molecules, including SiO2 surface-bound water. The photoconductive effect is attributed to the trapping of carriers in band tail states in the molybdenum disulfide itself. A simple model is presented that reproduces our experimental observations, such as the dependence on incident optical power and gate voltage. Our findings offer design and engineering strategies for atomically thin molybdenum disulfide photodetectors, and we anticipate that the results are generalizable to other transition metal dichalcogenides as well.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25299515</pmid><doi>10.1021/nl502339q</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-11, Vol.14 (11), p.6165-6170
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1624933771
source ACS Publications
subjects Applied sciences
Electronics
Exact sciences and technology
Optoelectronic devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Transistors
title Mechanisms of Photoconductivity in Atomically Thin MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Photoconductivity%20in%20Atomically%20Thin%20MoS2&rft.jtitle=Nano%20letters&rft.au=Furchi,%20Marco%20M&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6165&rft.epage=6170&rft.pages=6165-6170&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl502339q&rft_dat=%3Cproquest_pubme%3E1624933771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1624933771&rft_id=info:pmid/25299515&rfr_iscdi=true