Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles

An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2014-10, Vol.53 (10), p.2394-2411
Hauptverfasser: Koistinen, Jarmo, Pohjola, Heikki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2411
container_issue 10
container_start_page 2394
container_title Journal of applied meteorology and climatology
container_volume 53
creator Koistinen, Jarmo
Pohjola, Heikki
description An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of each radar at ranges of 2–40 km. At each radar, two time ensembles of the bias estimates are made use of: the first ensemble contains 0–24 members at each range gate, calculated by beam convolution from the measured VPRs at 15-min intervals during the most recent 6 h. The second ensemble similarly contains 24 members calculated from parameterized climatological VPRs. In each scan the precipitation type classification and the climatological VPR are matched with the freezing level obtained from a numerical weather prediction model. The members of the two ensembles are weighted for both time lapse and quality and are then combined. At each composite grid point, the value of the networked VPR correction is then determined as a distance-weighted mean of the time ensembles of biases from all radars located closer than 300 km. In the absence of calibration errors, the resulting estimate of the reflectivity factor at ground levelZₑis a seamless continuous field. As verified by radar–radar and radar–gauge comparisons in the Finnish network of eight C-band Doppler radars, the method efficiently reduces the range-dependent bias in QPE. For example, at radar ranges of 141–219 km, the average bias in the ground levelZₑwas −8.7 and 1.2 dB before and after the VPR correction, respectively.
doi_str_mv 10.1175/JAMC-D-13-0343.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622616274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26176443</jstor_id><sourcerecordid>26176443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-809db11523e12d625b9b2fe01d686229f9b069b2bf154a72b33753a5e672a0bb3</originalsourceid><addsrcrecordid>eNpdkctPGzEQxi3UStDAnQuSJS69mPq92SMN4VGlgCIeR8venYVNN-tgO6D893gJ4tDLzGj0m2808yF0yOgJY4X69ef074ScESYIFVKcsB20x5Qak7EU_NtXzeUu-hHjglIpi0Ltoc00pnZpU-t77Bt8Efy6r8kMXqHDc2g6qFL72qYNPrdV8gG3Pb5ZQfgYsB1-BJueIeC5rW3A15DefPgX8X1s-yf8cDsnv22EGk98CINSXjLtIyxdB3EffW9sF-HgM4_Q_fn0bnJJZjcXV5PTGakE14mMaVk7xhQXwHituXKl4w1QVuux5rxsSkd1brmGKWkL7oQolLAKdMEtdU6M0M-t7ir4lzXEZJZtrKDrbA9-HQ3LKjqHQmb0-D904dch3zlQrCxLTRnPFN1SVfAxBmjMKuQXho1h1AxemMELc2aYMIMXOY_Q0XZkEfMTv_i8t9BSCvEOvGeGHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619996012</pqid></control><display><type>article</type><title>Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Koistinen, Jarmo ; Pohjola, Heikki</creator><creatorcontrib>Koistinen, Jarmo ; Pohjola, Heikki</creatorcontrib><description>An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of each radar at ranges of 2–40 km. At each radar, two time ensembles of the bias estimates are made use of: the first ensemble contains 0–24 members at each range gate, calculated by beam convolution from the measured VPRs at 15-min intervals during the most recent 6 h. The second ensemble similarly contains 24 members calculated from parameterized climatological VPRs. In each scan the precipitation type classification and the climatological VPR are matched with the freezing level obtained from a numerical weather prediction model. The members of the two ensembles are weighted for both time lapse and quality and are then combined. At each composite grid point, the value of the networked VPR correction is then determined as a distance-weighted mean of the time ensembles of biases from all radars located closer than 300 km. In the absence of calibration errors, the resulting estimate of the reflectivity factor at ground levelZₑis a seamless continuous field. As verified by radar–radar and radar–gauge comparisons in the Finnish network of eight C-band Doppler radars, the method efficiently reduces the range-dependent bias in QPE. For example, at radar ranges of 141–219 km, the average bias in the ground levelZₑwas −8.7 and 1.2 dB before and after the VPR correction, respectively.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-13-0343.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Bias ; Climatology ; Data processing ; Estimates ; Estimation bias ; Freezing ; Ground level ; Mathematical models ; Melting ; Meteorology ; Meteors ; Precipitation ; Prediction models ; Radar ; Radar echoes ; Radar range ; Rain ; Reflectance ; Reflectivity ; Snow ; Weather ; Weather forecasting</subject><ispartof>Journal of applied meteorology and climatology, 2014-10, Vol.53 (10), p.2394-2411</ispartof><rights>2014 American Meteorological Society</rights><rights>Copyright American Meteorological Society Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-809db11523e12d625b9b2fe01d686229f9b069b2bf154a72b33753a5e672a0bb3</citedby><cites>FETCH-LOGICAL-c326t-809db11523e12d625b9b2fe01d686229f9b069b2bf154a72b33753a5e672a0bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26176443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26176443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,3682,27929,27930,58022,58255</link.rule.ids></links><search><creatorcontrib>Koistinen, Jarmo</creatorcontrib><creatorcontrib>Pohjola, Heikki</creatorcontrib><title>Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles</title><title>Journal of applied meteorology and climatology</title><description>An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of each radar at ranges of 2–40 km. At each radar, two time ensembles of the bias estimates are made use of: the first ensemble contains 0–24 members at each range gate, calculated by beam convolution from the measured VPRs at 15-min intervals during the most recent 6 h. The second ensemble similarly contains 24 members calculated from parameterized climatological VPRs. In each scan the precipitation type classification and the climatological VPR are matched with the freezing level obtained from a numerical weather prediction model. The members of the two ensembles are weighted for both time lapse and quality and are then combined. At each composite grid point, the value of the networked VPR correction is then determined as a distance-weighted mean of the time ensembles of biases from all radars located closer than 300 km. In the absence of calibration errors, the resulting estimate of the reflectivity factor at ground levelZₑis a seamless continuous field. As verified by radar–radar and radar–gauge comparisons in the Finnish network of eight C-band Doppler radars, the method efficiently reduces the range-dependent bias in QPE. For example, at radar ranges of 141–219 km, the average bias in the ground levelZₑwas −8.7 and 1.2 dB before and after the VPR correction, respectively.</description><subject>Bias</subject><subject>Climatology</subject><subject>Data processing</subject><subject>Estimates</subject><subject>Estimation bias</subject><subject>Freezing</subject><subject>Ground level</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Meteorology</subject><subject>Meteors</subject><subject>Precipitation</subject><subject>Prediction models</subject><subject>Radar</subject><subject>Radar echoes</subject><subject>Radar range</subject><subject>Rain</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Snow</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctPGzEQxi3UStDAnQuSJS69mPq92SMN4VGlgCIeR8venYVNN-tgO6D893gJ4tDLzGj0m2808yF0yOgJY4X69ef074ScESYIFVKcsB20x5Qak7EU_NtXzeUu-hHjglIpi0Ltoc00pnZpU-t77Bt8Efy6r8kMXqHDc2g6qFL72qYNPrdV8gG3Pb5ZQfgYsB1-BJueIeC5rW3A15DefPgX8X1s-yf8cDsnv22EGk98CINSXjLtIyxdB3EffW9sF-HgM4_Q_fn0bnJJZjcXV5PTGakE14mMaVk7xhQXwHituXKl4w1QVuux5rxsSkd1brmGKWkL7oQolLAKdMEtdU6M0M-t7ir4lzXEZJZtrKDrbA9-HQ3LKjqHQmb0-D904dch3zlQrCxLTRnPFN1SVfAxBmjMKuQXho1h1AxemMELc2aYMIMXOY_Q0XZkEfMTv_i8t9BSCvEOvGeGHw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Koistinen, Jarmo</creator><creator>Pohjola, Heikki</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7SP</scope></search><sort><creationdate>20141001</creationdate><title>Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles</title><author>Koistinen, Jarmo ; Pohjola, Heikki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-809db11523e12d625b9b2fe01d686229f9b069b2bf154a72b33753a5e672a0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bias</topic><topic>Climatology</topic><topic>Data processing</topic><topic>Estimates</topic><topic>Estimation bias</topic><topic>Freezing</topic><topic>Ground level</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Meteorology</topic><topic>Meteors</topic><topic>Precipitation</topic><topic>Prediction models</topic><topic>Radar</topic><topic>Radar echoes</topic><topic>Radar range</topic><topic>Rain</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Snow</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koistinen, Jarmo</creatorcontrib><creatorcontrib>Pohjola, Heikki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koistinen, Jarmo</au><au>Pohjola, Heikki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>53</volume><issue>10</issue><spage>2394</spage><epage>2411</epage><pages>2394-2411</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>An operational method is presented that corrects the bias of radar-based quantitative precipitation estimations (QPE) in radar networks that is due to the vertical profile of reflectivity (VPR) factor. It is used in both rain and snowfall. Measured average VPRs are obtained from the volume scans of each radar at ranges of 2–40 km. At each radar, two time ensembles of the bias estimates are made use of: the first ensemble contains 0–24 members at each range gate, calculated by beam convolution from the measured VPRs at 15-min intervals during the most recent 6 h. The second ensemble similarly contains 24 members calculated from parameterized climatological VPRs. In each scan the precipitation type classification and the climatological VPR are matched with the freezing level obtained from a numerical weather prediction model. The members of the two ensembles are weighted for both time lapse and quality and are then combined. At each composite grid point, the value of the networked VPR correction is then determined as a distance-weighted mean of the time ensembles of biases from all radars located closer than 300 km. In the absence of calibration errors, the resulting estimate of the reflectivity factor at ground levelZₑis a seamless continuous field. As verified by radar–radar and radar–gauge comparisons in the Finnish network of eight C-band Doppler radars, the method efficiently reduces the range-dependent bias in QPE. For example, at radar ranges of 141–219 km, the average bias in the ground levelZₑwas −8.7 and 1.2 dB before and after the VPR correction, respectively.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-13-0343.1</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2014-10, Vol.53 (10), p.2394-2411
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_miscellaneous_1622616274
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Bias
Climatology
Data processing
Estimates
Estimation bias
Freezing
Ground level
Mathematical models
Melting
Meteorology
Meteors
Precipitation
Prediction models
Radar
Radar echoes
Radar range
Rain
Reflectance
Reflectivity
Snow
Weather
Weather forecasting
title Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Ground-Level%20Reflectivity%20Factor%20in%20Operational%20Weather%20Radar%20Networks%20Using%20VPR-Based%20Correction%20Ensembles&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Koistinen,%20Jarmo&rft.date=2014-10-01&rft.volume=53&rft.issue=10&rft.spage=2394&rft.epage=2411&rft.pages=2394-2411&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/JAMC-D-13-0343.1&rft_dat=%3Cjstor_proqu%3E26176443%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619996012&rft_id=info:pmid/&rft_jstor_id=26176443&rfr_iscdi=true