Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation
Roquin controls T-cell activity through interactions with mRNAs of stimulatory receptors. Structural and functional elucidation of its RNA-binding domain reveals how it interacts with constitutive decay elements in the 3' UTR of its targets to regulate their expression. Roquin function in T cel...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2014-08, Vol.21 (8), p.671-678 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 8 |
container_start_page | 671 |
container_title | Nature structural & molecular biology |
container_volume | 21 |
creator | Schlundt, Andreas Heinz, Gitta A Janowski, Robert Geerlof, Arie Stehle, Ralf Heissmeyer, Vigo Niessing, Dierk Sattler, Michael |
description | Roquin controls T-cell activity through interactions with mRNAs of stimulatory receptors. Structural and functional elucidation of its RNA-binding domain reveals how it interacts with constitutive decay elements in the 3' UTR of its targets to regulate their expression.
Roquin function in T cells is essential for the prevention of autoimmune disease. Roquin interacts with the 3′ untranslated regions (UTRs) of co-stimulatory receptors and controls T-cell activation and differentiation. Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH) fold, which is sufficient for binding to the constitutive decay element (CDE) in the
Tnf
3′ UTR. The crystal structure of the ROQ domain in complex with a prototypical CDE RNA stem-loop reveals tight recognition of the RNA stem and its triloop. Surprisingly, roquin uses mainly non-sequence-specific contacts to the RNA, thus suggesting a relaxed CDE consensus and implicating a broader spectrum of target mRNAs than previously anticipated. Consistently with this, NMR and binding experiments with CDE-like stem-loops together with cell-based assays confirm roquin-dependent regulation of relaxed CDE consensus motifs in natural 3′ UTRs. |
doi_str_mv | 10.1038/nsmb.2855 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622616250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A381147349</galeid><sourcerecordid>A381147349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-fee07f2c93dc4fc16ec2bc276204da1b78c58f4fb74f90aca744b29eca742e203</originalsourceid><addsrcrecordid>eNptkV9r1jAUxoNM3Jxe7AuMwm5U6GuSJk17-TL2D4bCpndCSNOTktEmr0kK-u1N2JxORyA5nPyeh3N4EDoieENw0310cRk2tOP8BTognPG67zu-91j3zT56HeMdxpRz0bxC-5Rj2mIhDtC32xRWndag5mpQ0cbK-FDdfNpWAbSfnE3Wu8q6Kvjvq3X1AqNVCcZq52OqU1Au6mB3hcoOEzjIwmmdVem8QS-NmiO8fXgP0dfzsy-nl_X154ur0-11rTnrUm0AsDBU982omdGkBU0HTUVLMRsVGUSneWeYGQQzPVZaCcYG2kMpKFDcHKJ39767MiXEJBcbNcyzcuDXKElLaZsvXtCTf9A7v4Y8e6Y4J6RrOGV_qEnNIK0zPm-qi6ncNh0hTDSsz9TmGSqfERarvQNjc_-J4P0TQWYS_EiTWmOUV7c3z7I6-BgDGLkLdlHhpyRYltRlSV2W1DN7_LDUOuSAHsnfMWfgwz0Q85ebIPy19X9uvwC8cbVG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551183524</pqid></control><display><type>article</type><title>Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Schlundt, Andreas ; Heinz, Gitta A ; Janowski, Robert ; Geerlof, Arie ; Stehle, Ralf ; Heissmeyer, Vigo ; Niessing, Dierk ; Sattler, Michael</creator><creatorcontrib>Schlundt, Andreas ; Heinz, Gitta A ; Janowski, Robert ; Geerlof, Arie ; Stehle, Ralf ; Heissmeyer, Vigo ; Niessing, Dierk ; Sattler, Michael</creatorcontrib><description>Roquin controls T-cell activity through interactions with mRNAs of stimulatory receptors. Structural and functional elucidation of its RNA-binding domain reveals how it interacts with constitutive decay elements in the 3' UTR of its targets to regulate their expression.
Roquin function in T cells is essential for the prevention of autoimmune disease. Roquin interacts with the 3′ untranslated regions (UTRs) of co-stimulatory receptors and controls T-cell activation and differentiation. Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH) fold, which is sufficient for binding to the constitutive decay element (CDE) in the
Tnf
3′ UTR. The crystal structure of the ROQ domain in complex with a prototypical CDE RNA stem-loop reveals tight recognition of the RNA stem and its triloop. Surprisingly, roquin uses mainly non-sequence-specific contacts to the RNA, thus suggesting a relaxed CDE consensus and implicating a broader spectrum of target mRNAs than previously anticipated. Consistently with this, NMR and binding experiments with CDE-like stem-loops together with cell-based assays confirm roquin-dependent regulation of relaxed CDE consensus motifs in natural 3′ UTRs.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.2855</identifier><identifier>PMID: 25026077</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250 ; 631/45/500 ; 631/535/1266 ; 631/535/878/1263 ; Amino Acid Substitution ; Animals ; Autoimmune diseases ; Base Pairing ; Base Sequence ; Binding Sites ; Biochemistry ; Biological Microscopy ; Cells ; Cellular proteins ; Consensus Sequence ; Crystallography, X-Ray ; Decay ; Genes ; Genetic aspects ; Genetic regulation ; Genetic research ; Life Sciences ; Membrane Biology ; Mice ; Models, Molecular ; Mutagenesis, Site-Directed ; Neurons ; Nuclear Magnetic Resonance, Biomolecular ; Prevention ; Properties ; Protein Binding ; Protein Structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Ribonucleic acid ; RNA ; RNA Interference ; RNA Stability ; RNA, Messenger - chemistry ; T cells ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics</subject><ispartof>Nature structural & molecular biology, 2014-08, Vol.21 (8), p.671-678</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-fee07f2c93dc4fc16ec2bc276204da1b78c58f4fb74f90aca744b29eca742e203</citedby><cites>FETCH-LOGICAL-c548t-fee07f2c93dc4fc16ec2bc276204da1b78c58f4fb74f90aca744b29eca742e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.2855$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.2855$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25026077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlundt, Andreas</creatorcontrib><creatorcontrib>Heinz, Gitta A</creatorcontrib><creatorcontrib>Janowski, Robert</creatorcontrib><creatorcontrib>Geerlof, Arie</creatorcontrib><creatorcontrib>Stehle, Ralf</creatorcontrib><creatorcontrib>Heissmeyer, Vigo</creatorcontrib><creatorcontrib>Niessing, Dierk</creatorcontrib><creatorcontrib>Sattler, Michael</creatorcontrib><title>Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Roquin controls T-cell activity through interactions with mRNAs of stimulatory receptors. Structural and functional elucidation of its RNA-binding domain reveals how it interacts with constitutive decay elements in the 3' UTR of its targets to regulate their expression.
Roquin function in T cells is essential for the prevention of autoimmune disease. Roquin interacts with the 3′ untranslated regions (UTRs) of co-stimulatory receptors and controls T-cell activation and differentiation. Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH) fold, which is sufficient for binding to the constitutive decay element (CDE) in the
Tnf
3′ UTR. The crystal structure of the ROQ domain in complex with a prototypical CDE RNA stem-loop reveals tight recognition of the RNA stem and its triloop. Surprisingly, roquin uses mainly non-sequence-specific contacts to the RNA, thus suggesting a relaxed CDE consensus and implicating a broader spectrum of target mRNAs than previously anticipated. Consistently with this, NMR and binding experiments with CDE-like stem-loops together with cell-based assays confirm roquin-dependent regulation of relaxed CDE consensus motifs in natural 3′ UTRs.</description><subject>631/250</subject><subject>631/45/500</subject><subject>631/535/1266</subject><subject>631/535/878/1263</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Base Pairing</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Cells</subject><subject>Cellular proteins</subject><subject>Consensus Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Decay</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetic research</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Neurons</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Prevention</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA Stability</subject><subject>RNA, Messenger - chemistry</subject><subject>T cells</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkV9r1jAUxoNM3Jxe7AuMwm5U6GuSJk17-TL2D4bCpndCSNOTktEmr0kK-u1N2JxORyA5nPyeh3N4EDoieENw0310cRk2tOP8BTognPG67zu-91j3zT56HeMdxpRz0bxC-5Rj2mIhDtC32xRWndag5mpQ0cbK-FDdfNpWAbSfnE3Wu8q6Kvjvq3X1AqNVCcZq52OqU1Au6mB3hcoOEzjIwmmdVem8QS-NmiO8fXgP0dfzsy-nl_X154ur0-11rTnrUm0AsDBU982omdGkBU0HTUVLMRsVGUSneWeYGQQzPVZaCcYG2kMpKFDcHKJ39767MiXEJBcbNcyzcuDXKElLaZsvXtCTf9A7v4Y8e6Y4J6RrOGV_qEnNIK0zPm-qi6ncNh0hTDSsz9TmGSqfERarvQNjc_-J4P0TQWYS_EiTWmOUV7c3z7I6-BgDGLkLdlHhpyRYltRlSV2W1DN7_LDUOuSAHsnfMWfgwz0Q85ebIPy19X9uvwC8cbVG</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Schlundt, Andreas</creator><creator>Heinz, Gitta A</creator><creator>Janowski, Robert</creator><creator>Geerlof, Arie</creator><creator>Stehle, Ralf</creator><creator>Heissmeyer, Vigo</creator><creator>Niessing, Dierk</creator><creator>Sattler, Michael</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20140801</creationdate><title>Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation</title><author>Schlundt, Andreas ; Heinz, Gitta A ; Janowski, Robert ; Geerlof, Arie ; Stehle, Ralf ; Heissmeyer, Vigo ; Niessing, Dierk ; Sattler, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-fee07f2c93dc4fc16ec2bc276204da1b78c58f4fb74f90aca744b29eca742e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/250</topic><topic>631/45/500</topic><topic>631/535/1266</topic><topic>631/535/878/1263</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Base Pairing</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Cells</topic><topic>Cellular proteins</topic><topic>Consensus Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Decay</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetic research</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Neurons</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Prevention</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA Stability</topic><topic>RNA, Messenger - chemistry</topic><topic>T cells</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlundt, Andreas</creatorcontrib><creatorcontrib>Heinz, Gitta A</creatorcontrib><creatorcontrib>Janowski, Robert</creatorcontrib><creatorcontrib>Geerlof, Arie</creatorcontrib><creatorcontrib>Stehle, Ralf</creatorcontrib><creatorcontrib>Heissmeyer, Vigo</creatorcontrib><creatorcontrib>Niessing, Dierk</creatorcontrib><creatorcontrib>Sattler, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlundt, Andreas</au><au>Heinz, Gitta A</au><au>Janowski, Robert</au><au>Geerlof, Arie</au><au>Stehle, Ralf</au><au>Heissmeyer, Vigo</au><au>Niessing, Dierk</au><au>Sattler, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>21</volume><issue>8</issue><spage>671</spage><epage>678</epage><pages>671-678</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Roquin controls T-cell activity through interactions with mRNAs of stimulatory receptors. Structural and functional elucidation of its RNA-binding domain reveals how it interacts with constitutive decay elements in the 3' UTR of its targets to regulate their expression.
Roquin function in T cells is essential for the prevention of autoimmune disease. Roquin interacts with the 3′ untranslated regions (UTRs) of co-stimulatory receptors and controls T-cell activation and differentiation. Here we show that the N-terminal ROQ domain from mouse roquin adopts an extended winged-helix (WH) fold, which is sufficient for binding to the constitutive decay element (CDE) in the
Tnf
3′ UTR. The crystal structure of the ROQ domain in complex with a prototypical CDE RNA stem-loop reveals tight recognition of the RNA stem and its triloop. Surprisingly, roquin uses mainly non-sequence-specific contacts to the RNA, thus suggesting a relaxed CDE consensus and implicating a broader spectrum of target mRNAs than previously anticipated. Consistently with this, NMR and binding experiments with CDE-like stem-loops together with cell-based assays confirm roquin-dependent regulation of relaxed CDE consensus motifs in natural 3′ UTRs.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25026077</pmid><doi>10.1038/nsmb.2855</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2014-08, Vol.21 (8), p.671-678 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_1622616250 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/250 631/45/500 631/535/1266 631/535/878/1263 Amino Acid Substitution Animals Autoimmune diseases Base Pairing Base Sequence Binding Sites Biochemistry Biological Microscopy Cells Cellular proteins Consensus Sequence Crystallography, X-Ray Decay Genes Genetic aspects Genetic regulation Genetic research Life Sciences Membrane Biology Mice Models, Molecular Mutagenesis, Site-Directed Neurons Nuclear Magnetic Resonance, Biomolecular Prevention Properties Protein Binding Protein Structure Protein Structure, Secondary Protein Structure, Tertiary Ribonucleic acid RNA RNA Interference RNA Stability RNA, Messenger - chemistry T cells Ubiquitin-Protein Ligases - chemistry Ubiquitin-Protein Ligases - genetics |
title | Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20RNA%20recognition%20in%20roquin-mediated%20post-transcriptional%20gene%20regulation&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Schlundt,%20Andreas&rft.date=2014-08-01&rft.volume=21&rft.issue=8&rft.spage=671&rft.epage=678&rft.pages=671-678&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.2855&rft_dat=%3Cgale_proqu%3EA381147349%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551183524&rft_id=info:pmid/25026077&rft_galeid=A381147349&rfr_iscdi=true |