Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia

SF3B1 is a core component of the mRNA splicing machinery and frequently mutated in myeloid neoplasms with myelodysplasia, particularly in those characterized by the presence of increased ring sideroblasts. Deregulated RNA splicing is implicated in the pathogenesis of SF3B1 -mutated neoplasms, but th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2014-09, Vol.28 (9), p.1844-1850
Hauptverfasser: Matsunawa, M, Yamamoto, R, Sanada, M, Sato-Otsubo, A, Shiozawa, Y, Yoshida, K, Otsu, M, Shiraishi, Y, Miyano, S, Isono, K, Koseki, H, Nakauchi, H, Ogawa, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1850
container_issue 9
container_start_page 1844
container_title Leukemia
container_volume 28
creator Matsunawa, M
Yamamoto, R
Sanada, M
Sato-Otsubo, A
Shiozawa, Y
Yoshida, K
Otsu, M
Shiraishi, Y
Miyano, S
Isono, K
Koseki, H
Nakauchi, H
Ogawa, S
description SF3B1 is a core component of the mRNA splicing machinery and frequently mutated in myeloid neoplasms with myelodysplasia, particularly in those characterized by the presence of increased ring sideroblasts. Deregulated RNA splicing is implicated in the pathogenesis of SF3B1 -mutated neoplasms, but the exact mechanism by which the SF3B1 mutation is associated with myelodysplasia and the increased ring sideroblasts formation is still unknown. We investigated the functional role of SF3B1 in normal hematopoiesis utilizing Sf3b1 heterozygous-deficient mice. Sf3b1 +/− mice had a significantly reduced number of hematopoietic stem cells (CD34 − cKit + ScaI + Lin − cells or CD34 − KSL cells) compared with Sf3b1 +/+ mice, but hematopoiesis was grossly normal in Sf3b1 +/− mice. When transplanted competitively with Sf3b1 +/+ bone marrow cells, Sf3b1 +/− stem cells showed compromised reconstitution capacity in lethally irradiated mice. There was no increase in the number of ring sideroblasts or evidence of myeloid dysplasia in Sf3b1 +/− mice. These data suggest that SF3B1 plays an important role in the regulation of hematopoietic stem cells, whereas SF3B1 haploinsufficiency itself is not associated with the myelodysplastic syndrome phenotype with ring sideroblasts.
doi_str_mv 10.1038/leu.2014.73
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622611573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382657969</galeid><sourcerecordid>A382657969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-cc9577de7a1af25307a7ffe3e1ba0e8ca2e09ebce6bd1e2289aa2c700b3c0a5b3</originalsourceid><addsrcrecordid>eNqFks9rFTEQx4Mo9lk9eZeAUATdZ35sfuyxFLVCwYN6lJDNTtqUbPLc7B7ef2_WV7WVouQQyHxm5juTL0LPKdlSwvXbCMuWEdpuFX-ANrRVshFC0IdoQ7RWjexYe4SelHJNyBqUj9ERawUXLZEb9O3c7mIOqSzeBxcguT3OHn_2vKc4gh0KnjN2edxNeQwFBlxmGLGDGLFfkptDTrhfZpzyvJLjHmIe9mUXbQn2KXrkbSzw7OY-Rl_fv_tydt5cfPrw8ez0onFC87lxrhNKDaAstZ4JTpRV3gMH2lsC2lkGpIPegewHCozpzlrmFCE9d8SKnh-jV4e6VeX3BcpsqtZVo02Ql2KoZExSKhT_PyokIV2r266iL_9Cr_MypTqIYbKtxXQryL8oKkRHqKZS_aEubQQTks_zZN3a2pxyzaRQnVw7bu-h6hlgDC4n8KG-30k4uZVwBTbOVyXHZf2Wchd8fQDdlEuZwJvdFEY77Q0lZrWRqTYyq43MzyW9uJlp6UcYfrO_fFOBNweg1FC6hOnW0PfU-wHhbs73</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559018167</pqid></control><display><type>article</type><title>Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia</title><source>MEDLINE</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Matsunawa, M ; Yamamoto, R ; Sanada, M ; Sato-Otsubo, A ; Shiozawa, Y ; Yoshida, K ; Otsu, M ; Shiraishi, Y ; Miyano, S ; Isono, K ; Koseki, H ; Nakauchi, H ; Ogawa, S</creator><creatorcontrib>Matsunawa, M ; Yamamoto, R ; Sanada, M ; Sato-Otsubo, A ; Shiozawa, Y ; Yoshida, K ; Otsu, M ; Shiraishi, Y ; Miyano, S ; Isono, K ; Koseki, H ; Nakauchi, H ; Ogawa, S</creatorcontrib><description>SF3B1 is a core component of the mRNA splicing machinery and frequently mutated in myeloid neoplasms with myelodysplasia, particularly in those characterized by the presence of increased ring sideroblasts. Deregulated RNA splicing is implicated in the pathogenesis of SF3B1 -mutated neoplasms, but the exact mechanism by which the SF3B1 mutation is associated with myelodysplasia and the increased ring sideroblasts formation is still unknown. We investigated the functional role of SF3B1 in normal hematopoiesis utilizing Sf3b1 heterozygous-deficient mice. Sf3b1 +/− mice had a significantly reduced number of hematopoietic stem cells (CD34 − cKit + ScaI + Lin − cells or CD34 − KSL cells) compared with Sf3b1 +/+ mice, but hematopoiesis was grossly normal in Sf3b1 +/− mice. When transplanted competitively with Sf3b1 +/+ bone marrow cells, Sf3b1 +/− stem cells showed compromised reconstitution capacity in lethally irradiated mice. There was no increase in the number of ring sideroblasts or evidence of myeloid dysplasia in Sf3b1 +/− mice. These data suggest that SF3B1 plays an important role in the regulation of hematopoietic stem cells, whereas SF3B1 haploinsufficiency itself is not associated with the myelodysplastic syndrome phenotype with ring sideroblasts.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2014.73</identifier><identifier>PMID: 24535406</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136/232/1473/1542 ; 692/420/2489/68 ; 692/699/67/1990/1673 ; Animals ; Biology ; Bone marrow ; Bone marrow transplantation ; Cancer Research ; CD34 antigen ; Critical Care Medicine ; Cytokines ; Deregulation ; Development and progression ; Gene Expression Regulation ; Genetic aspects ; Genetic research ; Genomes ; Genotype &amp; phenotype ; Haploinsufficiency ; Hematology ; Hematopoiesis ; Hematopoietic stem cells ; Hematopoietic Stem Cells - physiology ; Intensive ; Internal Medicine ; Leukemia ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred C57BL ; mRNA ; Mutation ; Myelodysplastic syndrome ; Myelodysplastic syndromes ; Myelodysplastic Syndromes - genetics ; Neoplasms ; Oncology ; original-article ; Pathogenesis ; Phenotypes ; Phosphoproteins - genetics ; Ribonucleoprotein, U2 Small Nuclear - genetics ; RNA splicing ; RNA Splicing Factors ; Sideroblasts ; Software ; Stem cell transplantation ; Stem cells ; Tumors</subject><ispartof>Leukemia, 2014-09, Vol.28 (9), p.1844-1850</ispartof><rights>Macmillan Publishers Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><rights>Macmillan Publishers Limited 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-cc9577de7a1af25307a7ffe3e1ba0e8ca2e09ebce6bd1e2289aa2c700b3c0a5b3</citedby><cites>FETCH-LOGICAL-c583t-cc9577de7a1af25307a7ffe3e1ba0e8ca2e09ebce6bd1e2289aa2c700b3c0a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2014.73$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2014.73$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24535406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsunawa, M</creatorcontrib><creatorcontrib>Yamamoto, R</creatorcontrib><creatorcontrib>Sanada, M</creatorcontrib><creatorcontrib>Sato-Otsubo, A</creatorcontrib><creatorcontrib>Shiozawa, Y</creatorcontrib><creatorcontrib>Yoshida, K</creatorcontrib><creatorcontrib>Otsu, M</creatorcontrib><creatorcontrib>Shiraishi, Y</creatorcontrib><creatorcontrib>Miyano, S</creatorcontrib><creatorcontrib>Isono, K</creatorcontrib><creatorcontrib>Koseki, H</creatorcontrib><creatorcontrib>Nakauchi, H</creatorcontrib><creatorcontrib>Ogawa, S</creatorcontrib><title>Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>SF3B1 is a core component of the mRNA splicing machinery and frequently mutated in myeloid neoplasms with myelodysplasia, particularly in those characterized by the presence of increased ring sideroblasts. Deregulated RNA splicing is implicated in the pathogenesis of SF3B1 -mutated neoplasms, but the exact mechanism by which the SF3B1 mutation is associated with myelodysplasia and the increased ring sideroblasts formation is still unknown. We investigated the functional role of SF3B1 in normal hematopoiesis utilizing Sf3b1 heterozygous-deficient mice. Sf3b1 +/− mice had a significantly reduced number of hematopoietic stem cells (CD34 − cKit + ScaI + Lin − cells or CD34 − KSL cells) compared with Sf3b1 +/+ mice, but hematopoiesis was grossly normal in Sf3b1 +/− mice. When transplanted competitively with Sf3b1 +/+ bone marrow cells, Sf3b1 +/− stem cells showed compromised reconstitution capacity in lethally irradiated mice. There was no increase in the number of ring sideroblasts or evidence of myeloid dysplasia in Sf3b1 +/− mice. These data suggest that SF3B1 plays an important role in the regulation of hematopoietic stem cells, whereas SF3B1 haploinsufficiency itself is not associated with the myelodysplastic syndrome phenotype with ring sideroblasts.</description><subject>631/136/232/1473/1542</subject><subject>692/420/2489/68</subject><subject>692/699/67/1990/1673</subject><subject>Animals</subject><subject>Biology</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Cancer Research</subject><subject>CD34 antigen</subject><subject>Critical Care Medicine</subject><subject>Cytokines</subject><subject>Deregulation</subject><subject>Development and progression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Haploinsufficiency</subject><subject>Hematology</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Myelodysplastic syndrome</subject><subject>Myelodysplastic syndromes</subject><subject>Myelodysplastic Syndromes - genetics</subject><subject>Neoplasms</subject><subject>Oncology</subject><subject>original-article</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Phosphoproteins - genetics</subject><subject>Ribonucleoprotein, U2 Small Nuclear - genetics</subject><subject>RNA splicing</subject><subject>RNA Splicing Factors</subject><subject>Sideroblasts</subject><subject>Software</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tumors</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFks9rFTEQx4Mo9lk9eZeAUATdZ35sfuyxFLVCwYN6lJDNTtqUbPLc7B7ef2_WV7WVouQQyHxm5juTL0LPKdlSwvXbCMuWEdpuFX-ANrRVshFC0IdoQ7RWjexYe4SelHJNyBqUj9ERawUXLZEb9O3c7mIOqSzeBxcguT3OHn_2vKc4gh0KnjN2edxNeQwFBlxmGLGDGLFfkptDTrhfZpzyvJLjHmIe9mUXbQn2KXrkbSzw7OY-Rl_fv_tydt5cfPrw8ez0onFC87lxrhNKDaAstZ4JTpRV3gMH2lsC2lkGpIPegewHCozpzlrmFCE9d8SKnh-jV4e6VeX3BcpsqtZVo02Ql2KoZExSKhT_PyokIV2r266iL_9Cr_MypTqIYbKtxXQryL8oKkRHqKZS_aEubQQTks_zZN3a2pxyzaRQnVw7bu-h6hlgDC4n8KG-30k4uZVwBTbOVyXHZf2Wchd8fQDdlEuZwJvdFEY77Q0lZrWRqTYyq43MzyW9uJlp6UcYfrO_fFOBNweg1FC6hOnW0PfU-wHhbs73</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Matsunawa, M</creator><creator>Yamamoto, R</creator><creator>Sanada, M</creator><creator>Sato-Otsubo, A</creator><creator>Shiozawa, Y</creator><creator>Yoshida, K</creator><creator>Otsu, M</creator><creator>Shiraishi, Y</creator><creator>Miyano, S</creator><creator>Isono, K</creator><creator>Koseki, H</creator><creator>Nakauchi, H</creator><creator>Ogawa, S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia</title><author>Matsunawa, M ; Yamamoto, R ; Sanada, M ; Sato-Otsubo, A ; Shiozawa, Y ; Yoshida, K ; Otsu, M ; Shiraishi, Y ; Miyano, S ; Isono, K ; Koseki, H ; Nakauchi, H ; Ogawa, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-cc9577de7a1af25307a7ffe3e1ba0e8ca2e09ebce6bd1e2289aa2c700b3c0a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/136/232/1473/1542</topic><topic>692/420/2489/68</topic><topic>692/699/67/1990/1673</topic><topic>Animals</topic><topic>Biology</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Cancer Research</topic><topic>CD34 antigen</topic><topic>Critical Care Medicine</topic><topic>Cytokines</topic><topic>Deregulation</topic><topic>Development and progression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Haploinsufficiency</topic><topic>Hematology</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Myelodysplastic syndrome</topic><topic>Myelodysplastic syndromes</topic><topic>Myelodysplastic Syndromes - genetics</topic><topic>Neoplasms</topic><topic>Oncology</topic><topic>original-article</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Phosphoproteins - genetics</topic><topic>Ribonucleoprotein, U2 Small Nuclear - genetics</topic><topic>RNA splicing</topic><topic>RNA Splicing Factors</topic><topic>Sideroblasts</topic><topic>Software</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsunawa, M</creatorcontrib><creatorcontrib>Yamamoto, R</creatorcontrib><creatorcontrib>Sanada, M</creatorcontrib><creatorcontrib>Sato-Otsubo, A</creatorcontrib><creatorcontrib>Shiozawa, Y</creatorcontrib><creatorcontrib>Yoshida, K</creatorcontrib><creatorcontrib>Otsu, M</creatorcontrib><creatorcontrib>Shiraishi, Y</creatorcontrib><creatorcontrib>Miyano, S</creatorcontrib><creatorcontrib>Isono, K</creatorcontrib><creatorcontrib>Koseki, H</creatorcontrib><creatorcontrib>Nakauchi, H</creatorcontrib><creatorcontrib>Ogawa, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsunawa, M</au><au>Yamamoto, R</au><au>Sanada, M</au><au>Sato-Otsubo, A</au><au>Shiozawa, Y</au><au>Yoshida, K</au><au>Otsu, M</au><au>Shiraishi, Y</au><au>Miyano, S</au><au>Isono, K</au><au>Koseki, H</au><au>Nakauchi, H</au><au>Ogawa, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>28</volume><issue>9</issue><spage>1844</spage><epage>1850</epage><pages>1844-1850</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>SF3B1 is a core component of the mRNA splicing machinery and frequently mutated in myeloid neoplasms with myelodysplasia, particularly in those characterized by the presence of increased ring sideroblasts. Deregulated RNA splicing is implicated in the pathogenesis of SF3B1 -mutated neoplasms, but the exact mechanism by which the SF3B1 mutation is associated with myelodysplasia and the increased ring sideroblasts formation is still unknown. We investigated the functional role of SF3B1 in normal hematopoiesis utilizing Sf3b1 heterozygous-deficient mice. Sf3b1 +/− mice had a significantly reduced number of hematopoietic stem cells (CD34 − cKit + ScaI + Lin − cells or CD34 − KSL cells) compared with Sf3b1 +/+ mice, but hematopoiesis was grossly normal in Sf3b1 +/− mice. When transplanted competitively with Sf3b1 +/+ bone marrow cells, Sf3b1 +/− stem cells showed compromised reconstitution capacity in lethally irradiated mice. There was no increase in the number of ring sideroblasts or evidence of myeloid dysplasia in Sf3b1 +/− mice. These data suggest that SF3B1 plays an important role in the regulation of hematopoietic stem cells, whereas SF3B1 haploinsufficiency itself is not associated with the myelodysplastic syndrome phenotype with ring sideroblasts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24535406</pmid><doi>10.1038/leu.2014.73</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2014-09, Vol.28 (9), p.1844-1850
issn 0887-6924
1476-5551
language eng
recordid cdi_proquest_miscellaneous_1622611573
source MEDLINE; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals
subjects 631/136/232/1473/1542
692/420/2489/68
692/699/67/1990/1673
Animals
Biology
Bone marrow
Bone marrow transplantation
Cancer Research
CD34 antigen
Critical Care Medicine
Cytokines
Deregulation
Development and progression
Gene Expression Regulation
Genetic aspects
Genetic research
Genomes
Genotype & phenotype
Haploinsufficiency
Hematology
Hematopoiesis
Hematopoietic stem cells
Hematopoietic Stem Cells - physiology
Intensive
Internal Medicine
Leukemia
Medicine
Medicine & Public Health
Mice
Mice, Inbred C57BL
mRNA
Mutation
Myelodysplastic syndrome
Myelodysplastic syndromes
Myelodysplastic Syndromes - genetics
Neoplasms
Oncology
original-article
Pathogenesis
Phenotypes
Phosphoproteins - genetics
Ribonucleoprotein, U2 Small Nuclear - genetics
RNA splicing
RNA Splicing Factors
Sideroblasts
Software
Stem cell transplantation
Stem cells
Tumors
title Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haploinsufficiency%20of%20Sf3b1%20leads%20to%20compromised%20stem%20cell%20function%20but%20not%20to%20myelodysplasia&rft.jtitle=Leukemia&rft.au=Matsunawa,%20M&rft.date=2014-09-01&rft.volume=28&rft.issue=9&rft.spage=1844&rft.epage=1850&rft.pages=1844-1850&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2014.73&rft_dat=%3Cgale_proqu%3EA382657969%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559018167&rft_id=info:pmid/24535406&rft_galeid=A382657969&rfr_iscdi=true