Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor

Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-10, Vol.48 (19), p.11235-11242
Hauptverfasser: Tkacik, Daniel S, Lambe, Andrew T, Jathar, Shantanu, Li, Xiang, Presto, Albert A, Zhao, Yunliang, Blake, Donald, Meinardi, Simone, Jayne, John T, Croteau, Philip L, Robinson, Allen L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11242
container_issue 19
container_start_page 11235
container_title Environmental science & technology
container_volume 48
creator Tkacik, Daniel S
Lambe, Andrew T
Jathar, Shantanu
Li, Xiang
Presto, Albert A
Zhao, Yunliang
Blake, Donald
Meinardi, Simone
Jayne, John T
Croteau, Philip L
Robinson, Allen L
description Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2–3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼2.9 ± 1.6 Tg SOA yr–1 in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.
doi_str_mv 10.1021/es502239v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622605534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622605534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a544t-d500af932c738cf64caf9fb3dffc1c68590862672fee78722e7a2b1287eef26a3</originalsourceid><addsrcrecordid>eNqN0VtLHDEUB_AgLbrVPvQLlEAR2oepuUwu8yiiraBYqlt8G7LZExuZSTRntuC3b4rrKu1Ln0Lgl3_OhZB3nH3mTPADQMWEkN2vLTLjSrBGWcVfkRljXDad1Nc75A3iLWNMSGa3yY5Q3FrJzYykS_A5LV15oBflxqXo6SGUjHmgJ7mMboo50VDySGNq5gj0PE-50B_wM_oB6PEYEStBOseYbqij3_IEaYpu2OScO0T6HZyvD_fI6-AGhLfrc5fMT46vjr42ZxdfTo8Ozxqn2nZqlooxFzopvJHWB936egsLuQzBc6-t6pjVQhsRAIw1QoBxYsGFNQBBaCd3ycfH3LuS71eAU18L9TAMLkFeYc-1EJopJdv_oKyTzGihKv3wF73Nq5JqI1Xx1mrTWl7Vp0fla_9YIPR3JY51wj1n_Z999Zt9Vft-nbhajLDcyKcFVbC_Bg69G0JxyUd8drbjnTHds3MeX1T1z4e_ATDzqHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614867481</pqid></control><display><type>article</type><title>Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor</title><source>ACS Publications</source><source>MEDLINE</source><creator>Tkacik, Daniel S ; Lambe, Andrew T ; Jathar, Shantanu ; Li, Xiang ; Presto, Albert A ; Zhao, Yunliang ; Blake, Donald ; Meinardi, Simone ; Jayne, John T ; Croteau, Philip L ; Robinson, Allen L</creator><creatorcontrib>Tkacik, Daniel S ; Lambe, Andrew T ; Jathar, Shantanu ; Li, Xiang ; Presto, Albert A ; Zhao, Yunliang ; Blake, Donald ; Meinardi, Simone ; Jayne, John T ; Croteau, Philip L ; Robinson, Allen L</creatorcontrib><description>Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2–3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼2.9 ± 1.6 Tg SOA yr–1 in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502239v</identifier><identifier>PMID: 25188317</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols ; Aerosols - analysis ; Aerosols - chemistry ; Air Pollutants - analysis ; Air pollution ; Airborne particulates ; Applied sciences ; Atmosphere - analysis ; Atmospheric aerosols ; Atmospheric pollution ; Cities ; Exact sciences and technology ; Gasoline - analysis ; Hydroxyl Radical - analysis ; Nitrates - analysis ; Organic chemicals ; Organic Chemicals - analysis ; Oxidation ; Oxidation-Reduction ; Particulate Matter - analysis ; Pennsylvania ; Pollution ; Pollution sources. Measurement results ; Transports ; United States ; Vehicle emissions ; Vehicle Emissions - analysis ; Volatile Organic Compounds - chemistry</subject><ispartof>Environmental science &amp; technology, 2014-10, Vol.48 (19), p.11235-11242</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 7, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a544t-d500af932c738cf64caf9fb3dffc1c68590862672fee78722e7a2b1287eef26a3</citedby><cites>FETCH-LOGICAL-a544t-d500af932c738cf64caf9fb3dffc1c68590862672fee78722e7a2b1287eef26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es502239v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es502239v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28919779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25188317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tkacik, Daniel S</creatorcontrib><creatorcontrib>Lambe, Andrew T</creatorcontrib><creatorcontrib>Jathar, Shantanu</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Presto, Albert A</creatorcontrib><creatorcontrib>Zhao, Yunliang</creatorcontrib><creatorcontrib>Blake, Donald</creatorcontrib><creatorcontrib>Meinardi, Simone</creatorcontrib><creatorcontrib>Jayne, John T</creatorcontrib><creatorcontrib>Croteau, Philip L</creatorcontrib><creatorcontrib>Robinson, Allen L</creatorcontrib><title>Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2–3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼2.9 ± 1.6 Tg SOA yr–1 in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Aerosols - chemistry</subject><subject>Air Pollutants - analysis</subject><subject>Air pollution</subject><subject>Airborne particulates</subject><subject>Applied sciences</subject><subject>Atmosphere - analysis</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric pollution</subject><subject>Cities</subject><subject>Exact sciences and technology</subject><subject>Gasoline - analysis</subject><subject>Hydroxyl Radical - analysis</subject><subject>Nitrates - analysis</subject><subject>Organic chemicals</subject><subject>Organic Chemicals - analysis</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Particulate Matter - analysis</subject><subject>Pennsylvania</subject><subject>Pollution</subject><subject>Pollution sources. Measurement results</subject><subject>Transports</subject><subject>United States</subject><subject>Vehicle emissions</subject><subject>Vehicle Emissions - analysis</subject><subject>Volatile Organic Compounds - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0VtLHDEUB_AgLbrVPvQLlEAR2oepuUwu8yiiraBYqlt8G7LZExuZSTRntuC3b4rrKu1Ln0Lgl3_OhZB3nH3mTPADQMWEkN2vLTLjSrBGWcVfkRljXDad1Nc75A3iLWNMSGa3yY5Q3FrJzYykS_A5LV15oBflxqXo6SGUjHmgJ7mMboo50VDySGNq5gj0PE-50B_wM_oB6PEYEStBOseYbqij3_IEaYpu2OScO0T6HZyvD_fI6-AGhLfrc5fMT46vjr42ZxdfTo8Ozxqn2nZqlooxFzopvJHWB936egsLuQzBc6-t6pjVQhsRAIw1QoBxYsGFNQBBaCd3ycfH3LuS71eAU18L9TAMLkFeYc-1EJopJdv_oKyTzGihKv3wF73Nq5JqI1Xx1mrTWl7Vp0fla_9YIPR3JY51wj1n_Z999Zt9Vft-nbhajLDcyKcFVbC_Bg69G0JxyUd8drbjnTHds3MeX1T1z4e_ATDzqHA</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>Tkacik, Daniel S</creator><creator>Lambe, Andrew T</creator><creator>Jathar, Shantanu</creator><creator>Li, Xiang</creator><creator>Presto, Albert A</creator><creator>Zhao, Yunliang</creator><creator>Blake, Donald</creator><creator>Meinardi, Simone</creator><creator>Jayne, John T</creator><creator>Croteau, Philip L</creator><creator>Robinson, Allen L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope></search><sort><creationdate>20141007</creationdate><title>Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor</title><author>Tkacik, Daniel S ; Lambe, Andrew T ; Jathar, Shantanu ; Li, Xiang ; Presto, Albert A ; Zhao, Yunliang ; Blake, Donald ; Meinardi, Simone ; Jayne, John T ; Croteau, Philip L ; Robinson, Allen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a544t-d500af932c738cf64caf9fb3dffc1c68590862672fee78722e7a2b1287eef26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Aerosols - chemistry</topic><topic>Air Pollutants - analysis</topic><topic>Air pollution</topic><topic>Airborne particulates</topic><topic>Applied sciences</topic><topic>Atmosphere - analysis</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric pollution</topic><topic>Cities</topic><topic>Exact sciences and technology</topic><topic>Gasoline - analysis</topic><topic>Hydroxyl Radical - analysis</topic><topic>Nitrates - analysis</topic><topic>Organic chemicals</topic><topic>Organic Chemicals - analysis</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Particulate Matter - analysis</topic><topic>Pennsylvania</topic><topic>Pollution</topic><topic>Pollution sources. Measurement results</topic><topic>Transports</topic><topic>United States</topic><topic>Vehicle emissions</topic><topic>Vehicle Emissions - analysis</topic><topic>Volatile Organic Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tkacik, Daniel S</creatorcontrib><creatorcontrib>Lambe, Andrew T</creatorcontrib><creatorcontrib>Jathar, Shantanu</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Presto, Albert A</creatorcontrib><creatorcontrib>Zhao, Yunliang</creatorcontrib><creatorcontrib>Blake, Donald</creatorcontrib><creatorcontrib>Meinardi, Simone</creatorcontrib><creatorcontrib>Jayne, John T</creatorcontrib><creatorcontrib>Croteau, Philip L</creatorcontrib><creatorcontrib>Robinson, Allen L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tkacik, Daniel S</au><au>Lambe, Andrew T</au><au>Jathar, Shantanu</au><au>Li, Xiang</au><au>Presto, Albert A</au><au>Zhao, Yunliang</au><au>Blake, Donald</au><au>Meinardi, Simone</au><au>Jayne, John T</au><au>Croteau, Philip L</au><au>Robinson, Allen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-10-07</date><risdate>2014</risdate><volume>48</volume><issue>19</issue><spage>11235</spage><epage>11242</epage><pages>11235-11242</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2–3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼2.9 ± 1.6 Tg SOA yr–1 in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25188317</pmid><doi>10.1021/es502239v</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-10, Vol.48 (19), p.11235-11242
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1622605534
source ACS Publications; MEDLINE
subjects Aerosols
Aerosols - analysis
Aerosols - chemistry
Air Pollutants - analysis
Air pollution
Airborne particulates
Applied sciences
Atmosphere - analysis
Atmospheric aerosols
Atmospheric pollution
Cities
Exact sciences and technology
Gasoline - analysis
Hydroxyl Radical - analysis
Nitrates - analysis
Organic chemicals
Organic Chemicals - analysis
Oxidation
Oxidation-Reduction
Particulate Matter - analysis
Pennsylvania
Pollution
Pollution sources. Measurement results
Transports
United States
Vehicle emissions
Vehicle Emissions - analysis
Volatile Organic Compounds - chemistry
title Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Organic%20Aerosol%20Formation%20from%20in-Use%20Motor%20Vehicle%20Emissions%20Using%20a%20Potential%20Aerosol%20Mass%20Reactor&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tkacik,%20Daniel%20S&rft.date=2014-10-07&rft.volume=48&rft.issue=19&rft.spage=11235&rft.epage=11242&rft.pages=11235-11242&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es502239v&rft_dat=%3Cproquest_cross%3E1622605534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1614867481&rft_id=info:pmid/25188317&rfr_iscdi=true