A multi-resolution global land cover dataset through multisource data aggregation
Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolutio...
Gespeichert in:
Veröffentlicht in: | Science China. Earth sciences 2014-10, Vol.57 (10), p.2317-2329 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2329 |
---|---|
container_issue | 10 |
container_start_page | 2317 |
container_title | Science China. Earth sciences |
container_volume | 57 |
creator | Yu, Le Wang, Jie Li, XueCao Li, CongCong Zhao, YuanYuan Gong, Peng |
description | Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required. |
doi_str_mv | 10.1007/s11430-014-4919-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622601379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662508030</cqvip_id><sourcerecordid>1622601379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-4009dfd5abb23a4b452c93a39757282c4a4265c4132cbece966387ab416f86423</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4soOOb-AG9FL16ieUmaNMcx_AUDEfQc0jTtOrpmS1rB_fVmdoh4MJcXeJ_Pe49vklwCvgWMxV0AYBQjDAwxCRLtT5IJ5FwiyKU4jX8uGBIU6HkyC2GN46OxQ8QkeZ2nm6HtG-RtcO3QN65L69YVuk1b3ZWpcR_Wp6XudbB92q-8G-rVqAQ3eGO_e6mua29rfdAvkrNKt8HOjnWavD_cvy2e0PLl8XkxXyJDBe8Rw1iWVZnpoiBUs4JlxEiqqRSZIDkxTDPCM8OAElNYYyXnNBe6YMCrnDNCp8nNOHfr3W6woVebJhjbxrOtG4ICTgjHQIWM6PUfdB1v7-J1kQIsY4Y8ixSMlPEuBG8rtfXNRvtPBVgdclZjzirmrA45q310yOiEyHa19b8m_yNdHRetXFfvoveziXOS4RxTTL8AX4aLOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610900765</pqid></control><display><type>article</type><title>A multi-resolution global land cover dataset through multisource data aggregation</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Le ; Wang, Jie ; Li, XueCao ; Li, CongCong ; Zhao, YuanYuan ; Gong, Peng</creator><creatorcontrib>Yu, Le ; Wang, Jie ; Li, XueCao ; Li, CongCong ; Zhao, YuanYuan ; Gong, Peng</creatorcontrib><description>Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.</description><identifier>ISSN: 1674-7313</identifier><identifier>EISSN: 1869-1897</identifier><identifier>DOI: 10.1007/s11430-014-4919-z</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Data analysis ; Earth and Environmental Science ; Earth Sciences ; Impact analysis ; MODIS ; Remote sensing ; Research Paper ; Spatial analysis ; Vegetation mapping ; 土地覆盖类型 ; 地图绘制 ; 多分辨率 ; 多源数据融合 ; 数据集中 ; 空间分辨率 ; 面积估计</subject><ispartof>Science China. Earth sciences, 2014-10, Vol.57 (10), p.2317-2329</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-4009dfd5abb23a4b452c93a39757282c4a4265c4132cbece966387ab416f86423</citedby><cites>FETCH-LOGICAL-c376t-4009dfd5abb23a4b452c93a39757282c4a4265c4132cbece966387ab416f86423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60111X/60111X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11430-014-4919-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11430-014-4919-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Le</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, XueCao</creatorcontrib><creatorcontrib>Li, CongCong</creatorcontrib><creatorcontrib>Zhao, YuanYuan</creatorcontrib><creatorcontrib>Gong, Peng</creatorcontrib><title>A multi-resolution global land cover dataset through multisource data aggregation</title><title>Science China. Earth sciences</title><addtitle>Sci. China Earth Sci</addtitle><addtitle>SCIENCE CHINA Earth Sciences</addtitle><description>Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.</description><subject>Data analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Impact analysis</subject><subject>MODIS</subject><subject>Remote sensing</subject><subject>Research Paper</subject><subject>Spatial analysis</subject><subject>Vegetation mapping</subject><subject>土地覆盖类型</subject><subject>地图绘制</subject><subject>多分辨率</subject><subject>多源数据融合</subject><subject>数据集中</subject><subject>空间分辨率</subject><subject>面积估计</subject><issn>1674-7313</issn><issn>1869-1897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9LwzAUx4soOOb-AG9FL16ieUmaNMcx_AUDEfQc0jTtOrpmS1rB_fVmdoh4MJcXeJ_Pe49vklwCvgWMxV0AYBQjDAwxCRLtT5IJ5FwiyKU4jX8uGBIU6HkyC2GN46OxQ8QkeZ2nm6HtG-RtcO3QN65L69YVuk1b3ZWpcR_Wp6XudbB92q-8G-rVqAQ3eGO_e6mua29rfdAvkrNKt8HOjnWavD_cvy2e0PLl8XkxXyJDBe8Rw1iWVZnpoiBUs4JlxEiqqRSZIDkxTDPCM8OAElNYYyXnNBe6YMCrnDNCp8nNOHfr3W6woVebJhjbxrOtG4ICTgjHQIWM6PUfdB1v7-J1kQIsY4Y8ixSMlPEuBG8rtfXNRvtPBVgdclZjzirmrA45q310yOiEyHa19b8m_yNdHRetXFfvoveziXOS4RxTTL8AX4aLOw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Yu, Le</creator><creator>Wang, Jie</creator><creator>Li, XueCao</creator><creator>Li, CongCong</creator><creator>Zhao, YuanYuan</creator><creator>Gong, Peng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20141001</creationdate><title>A multi-resolution global land cover dataset through multisource data aggregation</title><author>Yu, Le ; Wang, Jie ; Li, XueCao ; Li, CongCong ; Zhao, YuanYuan ; Gong, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-4009dfd5abb23a4b452c93a39757282c4a4265c4132cbece966387ab416f86423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Impact analysis</topic><topic>MODIS</topic><topic>Remote sensing</topic><topic>Research Paper</topic><topic>Spatial analysis</topic><topic>Vegetation mapping</topic><topic>土地覆盖类型</topic><topic>地图绘制</topic><topic>多分辨率</topic><topic>多源数据融合</topic><topic>数据集中</topic><topic>空间分辨率</topic><topic>面积估计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Le</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Li, XueCao</creatorcontrib><creatorcontrib>Li, CongCong</creatorcontrib><creatorcontrib>Zhao, YuanYuan</creatorcontrib><creatorcontrib>Gong, Peng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Science China. Earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Le</au><au>Wang, Jie</au><au>Li, XueCao</au><au>Li, CongCong</au><au>Zhao, YuanYuan</au><au>Gong, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-resolution global land cover dataset through multisource data aggregation</atitle><jtitle>Science China. Earth sciences</jtitle><stitle>Sci. China Earth Sci</stitle><addtitle>SCIENCE CHINA Earth Sciences</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>57</volume><issue>10</issue><spage>2317</spage><epage>2329</epage><pages>2317-2329</pages><issn>1674-7313</issn><eissn>1869-1897</eissn><abstract>Recent developments of 30 m global land characterization datasets (e.g., land cover, vegetation continues field) represent the finest spatial resolution inputs for global scale studies. Here, we present results from further improvement to land cover map- ping and impact analysis of spatial resolution on area estimation for different land cover types. We proposed a set of methods to aggregate two existing 30 m resolution circa 2010 global land cover maps, namely FROM-GLC (Finer Resolution Observa- tion and Monitoring-Global Land Cover) and FROM-GLC-seg (Segmentation), with two coarser resolution global maps on development, i.e., Nighttime Light Impervious Surface Area (NL-ISA) and MODIS urban extent (MODIS-urban), to produce an improved 30 m global land cover map-FROM-GLC-agg (Aggregation). It was pos-processed using additional coarse res- olution datasets (i.e., MCD12Q1, GlobCover2009, MOD44W etc.) to reduce land cover type confusion. Around 98.9% pixels remain 30 m resolution after some post-processing to this dataset. Based on this map, majority aggregation and proportion ag- gregation approaches were employed to create a multi-resolution hierarchy (i.e., 250 m, 500 m, 1 km, 5 km, 10 km, 25 km, 50 km, 100 km) of land cover maps to meet requirements for different resolutions from different applications. Through accuracy assessment, we found that the best overall accuracies for the post-processed base map (at 30 m) and the three maps subse- quently aggregated at 250 m, 500 m, 1 km resolutions are 69.50%, 76.65%, 74.65%, and 73.47%, respectively. Our analysis of area-estimation biases for different land cover types at different resolutions suggests that maps at coarser than 5 km resolution contain at least 5% area estimation error for most land cover types. Proportion layers, which contain precise information on land cover percentage, are suggested for use when coarser resolution land cover data are required.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11430-014-4919-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7313 |
ispartof | Science China. Earth sciences, 2014-10, Vol.57 (10), p.2317-2329 |
issn | 1674-7313 1869-1897 |
language | eng |
recordid | cdi_proquest_miscellaneous_1622601379 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Data analysis Earth and Environmental Science Earth Sciences Impact analysis MODIS Remote sensing Research Paper Spatial analysis Vegetation mapping 土地覆盖类型 地图绘制 多分辨率 多源数据融合 数据集中 空间分辨率 面积估计 |
title | A multi-resolution global land cover dataset through multisource data aggregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-resolution%20global%20land%20cover%20dataset%20through%20multisource%20data%20aggregation&rft.jtitle=Science%20China.%20Earth%20sciences&rft.au=Yu,%20Le&rft.date=2014-10-01&rft.volume=57&rft.issue=10&rft.spage=2317&rft.epage=2329&rft.pages=2317-2329&rft.issn=1674-7313&rft.eissn=1869-1897&rft_id=info:doi/10.1007/s11430-014-4919-z&rft_dat=%3Cproquest_cross%3E1622601379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610900765&rft_id=info:pmid/&rft_cqvip_id=662508030&rfr_iscdi=true |