Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies

Svalbard is an anomalous, subaerial part of the Barents Shelf, Northeast Atlantic Ocean. In this study, we performed both, one‐ and two‐dimensional subsidence analyses based on basin structure, water depth, and thermochronology, to quantify and date the phases of uplift affecting Svalbard during the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2013-06, Vol.32 (3), p.473-486
Hauptverfasser: Dörr, N., Clift, P. D., Lisker, F., Spiegel, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 3
container_start_page 473
container_title Tectonics (Washington, D.C.)
container_volume 32
creator Dörr, N.
Clift, P. D.
Lisker, F.
Spiegel, C.
description Svalbard is an anomalous, subaerial part of the Barents Shelf, Northeast Atlantic Ocean. In this study, we performed both, one‐ and two‐dimensional subsidence analyses based on basin structure, water depth, and thermochronology, to quantify and date the phases of uplift affecting Svalbard during the Cenozoic. Svalbard has experienced two phases of uplift, from >36 to ~10 Ma, and since ~10 Ma, similar in timing to uplift phases identified in Greenland, Scandinavia, and the Barents Shelf. Total uplift across much of the Central Tertiary Basin of Svalbard is >1.5 km and exceeds 2.5 km in parts of the West Spitsbergen Foldbelt (WSFB). Uplift from >36 to ~10 Ma accounts for the greatest part of the vertical motion and like the younger phase reduces in magnitude towards the east. Flexural rigidity of the lithosphere is estimated to be low (Te ≈ 5 km), so that post‐36 Ma erosion of the WSFB contributes little to the uplift, whose permanent nature and proximity to the synchronous Yermak Plateau favors a link to regional magmatic underplating. Plume dynamic support and flexural unloading along the western transform plate margin can be ruled out as influences on vertical motions. Since ~10 Ma renewed uplift, generating the modern topography may be linked to thermal erosion of the mantle lithosphere under Svalbard. We suggest that a likely cause of much of the surface uplift is the northward propagation of the Knipovich Ridge to establish continuous seafloor spreading through the Fram Strait after ~10 Ma. Key Points Svalbard is an anomaleous subaerial part of the Barents ShelfIt experienced at least two uplift phases in the cenozoic.reasons for uplift are lithospheric processes.
doi_str_mv 10.1002/tect.20039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622599050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622599050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4319-6b3f1790bf668bcb75d12989022ef2cc6b7b2dc303ec590ccc557fbb999a79c83</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS0EEkNhwy-wxAahpvgRx_EKoekwpapAiEFFbCzbuZm6OMnUdlrm3-MywIIFm_uwv3NkH4SeU3JCCWGvM7h8wgjh6gFaUFXXlSr1IVoQJttK1kQ-Rk9SuiaE1qJpFmi4vNpjn_DnWxOsiR02Y1mDGbs3eHXrOxgd4H6KON9NVcpmC3jeBd_nYzyY7WCyd3geO4i7UOZxe1wMunI15gA4X0EcTChHU2ke0lP0qDchwbPf_Qh9ebfaLM-qi4_r98u3F5WpOVVVY3lPpSK2b5rWOitFR5lqFWEMeuZcY6VlneOEgxOKOOeEkL21SikjlWv5EXp58N3F6WaGlPXgk4NQ_gXTnDRtGBNKEUEK-uIf9Hqa41heVyje1gWqRaFeHSgXp5Qi9HoX_WDiXlOi75PX98nrX8kXmB7gOx9g_x9Sb1bLzR9NddD4lOHHX42J33UjuRT68sNafz0__XR2-m2tz_lPreKVug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638490545</pqid></control><display><type>article</type><title>Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Dörr, N. ; Clift, P. D. ; Lisker, F. ; Spiegel, C.</creator><creatorcontrib>Dörr, N. ; Clift, P. D. ; Lisker, F. ; Spiegel, C.</creatorcontrib><description>Svalbard is an anomalous, subaerial part of the Barents Shelf, Northeast Atlantic Ocean. In this study, we performed both, one‐ and two‐dimensional subsidence analyses based on basin structure, water depth, and thermochronology, to quantify and date the phases of uplift affecting Svalbard during the Cenozoic. Svalbard has experienced two phases of uplift, from &gt;36 to ~10 Ma, and since ~10 Ma, similar in timing to uplift phases identified in Greenland, Scandinavia, and the Barents Shelf. Total uplift across much of the Central Tertiary Basin of Svalbard is &gt;1.5 km and exceeds 2.5 km in parts of the West Spitsbergen Foldbelt (WSFB). Uplift from &gt;36 to ~10 Ma accounts for the greatest part of the vertical motion and like the younger phase reduces in magnitude towards the east. Flexural rigidity of the lithosphere is estimated to be low (Te ≈ 5 km), so that post‐36 Ma erosion of the WSFB contributes little to the uplift, whose permanent nature and proximity to the synchronous Yermak Plateau favors a link to regional magmatic underplating. Plume dynamic support and flexural unloading along the western transform plate margin can be ruled out as influences on vertical motions. Since ~10 Ma renewed uplift, generating the modern topography may be linked to thermal erosion of the mantle lithosphere under Svalbard. We suggest that a likely cause of much of the surface uplift is the northward propagation of the Knipovich Ridge to establish continuous seafloor spreading through the Fram Strait after ~10 Ma. Key Points Svalbard is an anomaleous subaerial part of the Barents ShelfIt experienced at least two uplift phases in the cenozoic.reasons for uplift are lithospheric processes.</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1002/tect.20039</identifier><identifier>CODEN: TCTNDM</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Cenozoic ; erosion ; flexure ; Lithosphere ; Magma ; Ocean floor ; Oceans ; Plate tectonics ; Rigidity ; Seafloor spreading ; Seismology ; subsidence ; Svalbard ; uplift ; Water depth</subject><ispartof>Tectonics (Washington, D.C.), 2013-06, Vol.32 (3), p.473-486</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4319-6b3f1790bf668bcb75d12989022ef2cc6b7b2dc303ec590ccc557fbb999a79c83</citedby><cites>FETCH-LOGICAL-a4319-6b3f1790bf668bcb75d12989022ef2cc6b7b2dc303ec590ccc557fbb999a79c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftect.20039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftect.20039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Dörr, N.</creatorcontrib><creatorcontrib>Clift, P. D.</creatorcontrib><creatorcontrib>Lisker, F.</creatorcontrib><creatorcontrib>Spiegel, C.</creatorcontrib><title>Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies</title><title>Tectonics (Washington, D.C.)</title><addtitle>Tectonics</addtitle><description>Svalbard is an anomalous, subaerial part of the Barents Shelf, Northeast Atlantic Ocean. In this study, we performed both, one‐ and two‐dimensional subsidence analyses based on basin structure, water depth, and thermochronology, to quantify and date the phases of uplift affecting Svalbard during the Cenozoic. Svalbard has experienced two phases of uplift, from &gt;36 to ~10 Ma, and since ~10 Ma, similar in timing to uplift phases identified in Greenland, Scandinavia, and the Barents Shelf. Total uplift across much of the Central Tertiary Basin of Svalbard is &gt;1.5 km and exceeds 2.5 km in parts of the West Spitsbergen Foldbelt (WSFB). Uplift from &gt;36 to ~10 Ma accounts for the greatest part of the vertical motion and like the younger phase reduces in magnitude towards the east. Flexural rigidity of the lithosphere is estimated to be low (Te ≈ 5 km), so that post‐36 Ma erosion of the WSFB contributes little to the uplift, whose permanent nature and proximity to the synchronous Yermak Plateau favors a link to regional magmatic underplating. Plume dynamic support and flexural unloading along the western transform plate margin can be ruled out as influences on vertical motions. Since ~10 Ma renewed uplift, generating the modern topography may be linked to thermal erosion of the mantle lithosphere under Svalbard. We suggest that a likely cause of much of the surface uplift is the northward propagation of the Knipovich Ridge to establish continuous seafloor spreading through the Fram Strait after ~10 Ma. Key Points Svalbard is an anomaleous subaerial part of the Barents ShelfIt experienced at least two uplift phases in the cenozoic.reasons for uplift are lithospheric processes.</description><subject>Cenozoic</subject><subject>erosion</subject><subject>flexure</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>Plate tectonics</subject><subject>Rigidity</subject><subject>Seafloor spreading</subject><subject>Seismology</subject><subject>subsidence</subject><subject>Svalbard</subject><subject>uplift</subject><subject>Water depth</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAUhS0EEkNhwy-wxAahpvgRx_EKoekwpapAiEFFbCzbuZm6OMnUdlrm3-MywIIFm_uwv3NkH4SeU3JCCWGvM7h8wgjh6gFaUFXXlSr1IVoQJttK1kQ-Rk9SuiaE1qJpFmi4vNpjn_DnWxOsiR02Y1mDGbs3eHXrOxgd4H6KON9NVcpmC3jeBd_nYzyY7WCyd3geO4i7UOZxe1wMunI15gA4X0EcTChHU2ke0lP0qDchwbPf_Qh9ebfaLM-qi4_r98u3F5WpOVVVY3lPpSK2b5rWOitFR5lqFWEMeuZcY6VlneOEgxOKOOeEkL21SikjlWv5EXp58N3F6WaGlPXgk4NQ_gXTnDRtGBNKEUEK-uIf9Hqa41heVyje1gWqRaFeHSgXp5Qi9HoX_WDiXlOi75PX98nrX8kXmB7gOx9g_x9Sb1bLzR9NddD4lOHHX42J33UjuRT68sNafz0__XR2-m2tz_lPreKVug</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Dörr, N.</creator><creator>Clift, P. D.</creator><creator>Lisker, F.</creator><creator>Spiegel, C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201306</creationdate><title>Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies</title><author>Dörr, N. ; Clift, P. D. ; Lisker, F. ; Spiegel, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4319-6b3f1790bf668bcb75d12989022ef2cc6b7b2dc303ec590ccc557fbb999a79c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cenozoic</topic><topic>erosion</topic><topic>flexure</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>Plate tectonics</topic><topic>Rigidity</topic><topic>Seafloor spreading</topic><topic>Seismology</topic><topic>subsidence</topic><topic>Svalbard</topic><topic>uplift</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dörr, N.</creatorcontrib><creatorcontrib>Clift, P. D.</creatorcontrib><creatorcontrib>Lisker, F.</creatorcontrib><creatorcontrib>Spiegel, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dörr, N.</au><au>Clift, P. D.</au><au>Lisker, F.</au><au>Spiegel, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><addtitle>Tectonics</addtitle><date>2013-06</date><risdate>2013</risdate><volume>32</volume><issue>3</issue><spage>473</spage><epage>486</epage><pages>473-486</pages><issn>0278-7407</issn><eissn>1944-9194</eissn><coden>TCTNDM</coden><abstract>Svalbard is an anomalous, subaerial part of the Barents Shelf, Northeast Atlantic Ocean. In this study, we performed both, one‐ and two‐dimensional subsidence analyses based on basin structure, water depth, and thermochronology, to quantify and date the phases of uplift affecting Svalbard during the Cenozoic. Svalbard has experienced two phases of uplift, from &gt;36 to ~10 Ma, and since ~10 Ma, similar in timing to uplift phases identified in Greenland, Scandinavia, and the Barents Shelf. Total uplift across much of the Central Tertiary Basin of Svalbard is &gt;1.5 km and exceeds 2.5 km in parts of the West Spitsbergen Foldbelt (WSFB). Uplift from &gt;36 to ~10 Ma accounts for the greatest part of the vertical motion and like the younger phase reduces in magnitude towards the east. Flexural rigidity of the lithosphere is estimated to be low (Te ≈ 5 km), so that post‐36 Ma erosion of the WSFB contributes little to the uplift, whose permanent nature and proximity to the synchronous Yermak Plateau favors a link to regional magmatic underplating. Plume dynamic support and flexural unloading along the western transform plate margin can be ruled out as influences on vertical motions. Since ~10 Ma renewed uplift, generating the modern topography may be linked to thermal erosion of the mantle lithosphere under Svalbard. We suggest that a likely cause of much of the surface uplift is the northward propagation of the Knipovich Ridge to establish continuous seafloor spreading through the Fram Strait after ~10 Ma. Key Points Svalbard is an anomaleous subaerial part of the Barents ShelfIt experienced at least two uplift phases in the cenozoic.reasons for uplift are lithospheric processes.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/tect.20039</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-7407
ispartof Tectonics (Washington, D.C.), 2013-06, Vol.32 (3), p.473-486
issn 0278-7407
1944-9194
language eng
recordid cdi_proquest_miscellaneous_1622599050
source Wiley Journals; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Cenozoic
erosion
flexure
Lithosphere
Magma
Ocean floor
Oceans
Plate tectonics
Rigidity
Seafloor spreading
Seismology
subsidence
Svalbard
uplift
Water depth
title Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20is%20Svalbard%20an%20island?%20Evidence%20for%20two-stage%20uplift,%20magmatic%20underplating,%20and%20mantle%20thermal%20anomalies&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=D%C3%B6rr,%20N.&rft.date=2013-06&rft.volume=32&rft.issue=3&rft.spage=473&rft.epage=486&rft.pages=473-486&rft.issn=0278-7407&rft.eissn=1944-9194&rft.coden=TCTNDM&rft_id=info:doi/10.1002/tect.20039&rft_dat=%3Cproquest_cross%3E1622599050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638490545&rft_id=info:pmid/&rfr_iscdi=true