Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels

Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not ful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2014-11, Vol.54 (3), p.443-450
Hauptverfasser: Koide, Masayo, Syed, Arsalan U, Braas, Karen M, May, Victor, Wellman, George C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 3
container_start_page 443
container_title Journal of molecular neuroscience
container_volume 54
creator Koide, Masayo
Syed, Arsalan U
Braas, Karen M
May, Victor
Wellman, George C
description Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.
doi_str_mv 10.1007/s12031-014-0301-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1622061743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622061743</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-99cd04b0629b595644a08c50698a950970cb6ec80d76bfa8278f67c9df4336993</originalsourceid><addsrcrecordid>eNo9kFFr2zAUhcWgrG22H7CXcR9tijZJlmXrMQ1bO1JYHrrnIEvXiYoju5ZcyP7b_tscmvbpwrkf53AOIV84-8YZq75HLljBKeOSsoJx-vcDueJlqSnnSl2S6xifGBNc8vojuRSyklKU4or82_g0-WTGIxiH4diZhGCPtjMRwdjkX0zyYQdD3x0HHJJ3CNlmuVpucnD-REewOGKDXWdGMGPC0c9a2o_9tNu_W_QB-hZmZIfU9sFNNplgEVYmEzc5PWPoILtd52CCg-XjhkYM0c-fOXN9EnJYQ3aTg92bELCLn8hFa7qIn893Qf78_PG4uqcPv-9-rZYPdOBaJaq1dUw2TAndlLpUUhpW25IpXRtdMl0x2yi0NXOValpTi6puVWW1a2VRKK2LBclefYexf54wpu3BR3uqHLCf4pYrIZji1YwvyNczOjUHdNth9Id53e3b5MV_NbeBaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622061743</pqid></control><display><type>article</type><title>Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Koide, Masayo ; Syed, Arsalan U ; Braas, Karen M ; May, Victor ; Wellman, George C</creator><creatorcontrib>Koide, Masayo ; Syed, Arsalan U ; Braas, Karen M ; May, Victor ; Wellman, George C</creatorcontrib><description>Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.</description><identifier>EISSN: 1559-1166</identifier><identifier>DOI: 10.1007/s12031-014-0301-z</identifier><identifier>PMID: 24744252</identifier><language>eng</language><publisher>United States</publisher><subject>Action Potentials ; Animals ; Calcium Signaling ; Cells, Cultured ; Cerebellum - blood supply ; Cerebral Arteries - drug effects ; Cerebral Arteries - metabolism ; Cerebral Arteries - physiology ; KATP Channels - metabolism ; Large-Conductance Calcium-Activated Potassium Channels - metabolism ; Male ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - physiology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - physiology ; Pituitary Adenylate Cyclase-Activating Polypeptide - pharmacology ; Potassium Channel Blockers - pharmacology ; Rats ; Rats, Sprague-Dawley ; Vasodilation</subject><ispartof>Journal of molecular neuroscience, 2014-11, Vol.54 (3), p.443-450</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24744252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koide, Masayo</creatorcontrib><creatorcontrib>Syed, Arsalan U</creatorcontrib><creatorcontrib>Braas, Karen M</creatorcontrib><creatorcontrib>May, Victor</creatorcontrib><creatorcontrib>Wellman, George C</creatorcontrib><title>Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels</title><title>Journal of molecular neuroscience</title><addtitle>J Mol Neurosci</addtitle><description>Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Calcium Signaling</subject><subject>Cells, Cultured</subject><subject>Cerebellum - blood supply</subject><subject>Cerebral Arteries - drug effects</subject><subject>Cerebral Arteries - metabolism</subject><subject>Cerebral Arteries - physiology</subject><subject>KATP Channels - metabolism</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Male</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - physiology</subject><subject>Pituitary Adenylate Cyclase-Activating Polypeptide - pharmacology</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Vasodilation</subject><issn>1559-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFFr2zAUhcWgrG22H7CXcR9tijZJlmXrMQ1bO1JYHrrnIEvXiYoju5ZcyP7b_tscmvbpwrkf53AOIV84-8YZq75HLljBKeOSsoJx-vcDueJlqSnnSl2S6xifGBNc8vojuRSyklKU4or82_g0-WTGIxiH4diZhGCPtjMRwdjkX0zyYQdD3x0HHJJ3CNlmuVpucnD-REewOGKDXWdGMGPC0c9a2o_9tNu_W_QB-hZmZIfU9sFNNplgEVYmEzc5PWPoILtd52CCg-XjhkYM0c-fOXN9EnJYQ3aTg92bELCLn8hFa7qIn893Qf78_PG4uqcPv-9-rZYPdOBaJaq1dUw2TAndlLpUUhpW25IpXRtdMl0x2yi0NXOValpTi6puVWW1a2VRKK2LBclefYexf54wpu3BR3uqHLCf4pYrIZji1YwvyNczOjUHdNth9Id53e3b5MV_NbeBaw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Koide, Masayo</creator><creator>Syed, Arsalan U</creator><creator>Braas, Karen M</creator><creator>May, Victor</creator><creator>Wellman, George C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20141101</creationdate><title>Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels</title><author>Koide, Masayo ; Syed, Arsalan U ; Braas, Karen M ; May, Victor ; Wellman, George C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-99cd04b0629b595644a08c50698a950970cb6ec80d76bfa8278f67c9df4336993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Calcium Signaling</topic><topic>Cells, Cultured</topic><topic>Cerebellum - blood supply</topic><topic>Cerebral Arteries - drug effects</topic><topic>Cerebral Arteries - metabolism</topic><topic>Cerebral Arteries - physiology</topic><topic>KATP Channels - metabolism</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Male</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - physiology</topic><topic>Pituitary Adenylate Cyclase-Activating Polypeptide - pharmacology</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koide, Masayo</creatorcontrib><creatorcontrib>Syed, Arsalan U</creatorcontrib><creatorcontrib>Braas, Karen M</creatorcontrib><creatorcontrib>May, Victor</creatorcontrib><creatorcontrib>Wellman, George C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koide, Masayo</au><au>Syed, Arsalan U</au><au>Braas, Karen M</au><au>May, Victor</au><au>Wellman, George C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels</atitle><jtitle>Journal of molecular neuroscience</jtitle><addtitle>J Mol Neurosci</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>54</volume><issue>3</issue><spage>443</spage><epage>450</epage><pages>443-450</pages><eissn>1559-1166</eissn><abstract>Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.</abstract><cop>United States</cop><pmid>24744252</pmid><doi>10.1007/s12031-014-0301-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-1166
ispartof Journal of molecular neuroscience, 2014-11, Vol.54 (3), p.443-450
issn 1559-1166
language eng
recordid cdi_proquest_miscellaneous_1622061743
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Action Potentials
Animals
Calcium Signaling
Cells, Cultured
Cerebellum - blood supply
Cerebral Arteries - drug effects
Cerebral Arteries - metabolism
Cerebral Arteries - physiology
KATP Channels - metabolism
Large-Conductance Calcium-Activated Potassium Channels - metabolism
Male
Muscle, Smooth, Vascular - drug effects
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - physiology
Myocytes, Smooth Muscle - drug effects
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - physiology
Pituitary Adenylate Cyclase-Activating Polypeptide - pharmacology
Potassium Channel Blockers - pharmacology
Rats
Rats, Sprague-Dawley
Vasodilation
title Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pituitary%20adenylate%20cyclase%20activating%20polypeptide%20(PACAP)%20dilates%20cerebellar%20arteries%20through%20activation%20of%20large-conductance%20Ca(2+)-activated%20(BK)%20and%20ATP-sensitive%20(K%20ATP)%20K%20(+)%20channels&rft.jtitle=Journal%20of%20molecular%20neuroscience&rft.au=Koide,%20Masayo&rft.date=2014-11-01&rft.volume=54&rft.issue=3&rft.spage=443&rft.epage=450&rft.pages=443-450&rft.eissn=1559-1166&rft_id=info:doi/10.1007/s12031-014-0301-z&rft_dat=%3Cproquest_pubme%3E1622061743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622061743&rft_id=info:pmid/24744252&rfr_iscdi=true