Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA
The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and cou...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2014-11, Vol.136 (44), p.15631-15637 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15637 |
---|---|
container_issue | 44 |
container_start_page | 15631 |
container_title | Journal of the American Chemical Society |
container_volume | 136 |
creator | Musiani, Francesco Rossetti, Giulia Capece, Luciana Gerger, Thomas Martin Micheletti, Cristian Varani, Gabriele Carloni, Paolo |
description | The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding. |
doi_str_mv | 10.1021/ja507812v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1621216953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1621216953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</originalsourceid><addsrcrecordid>eNptkc9uEzEQhy0EomnhwAsgX5DoYcFjx97NsQp_GqmAlASuq7FjF0e7drCzkXLjFXgbnocnwU1KkBAn2zPffCP5R8gzYK-AcXi9RsnqBvjuARmB5KySwNVDMmKM8apulDgj5zmvy3PMG3hMzrgUIJRoRuTnh9hZM3SY6Jt9wN6bTBe-L4WtjyHT2cqGrXd7uvS9pQuDnaXR0WkMLqb-AGFHp18x3NpM5zZvypTXhSr9f7GFLbvu7tQH-nfx3Jp4G_yhUdzXsy-_vv8AukwYMhZ-d5g_yXeWzj9ePSGPHHbZPr0_L8jnd2-X0-vq5tP72fTqpkIh2bZaaSUmYEytV8wgOtVgLbm2NXeNdqLWDUpQUmqupOWTMQJjOHFcuIaNxxrEBXl59G5S_DbYvG17n43tOgw2DrkFxYGDmkhR0MsjalLMOVnXbpLvMe1bYO1dUO0pqMI-v9cOurerE_knmQK8OAJocruOQyofmP8j-g1jlZ6x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1621216953</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</title><source>MEDLINE</source><source>ACS Publications</source><creator>Musiani, Francesco ; Rossetti, Giulia ; Capece, Luciana ; Gerger, Thomas Martin ; Micheletti, Cristian ; Varani, Gabriele ; Carloni, Paolo</creator><creatorcontrib>Musiani, Francesco ; Rossetti, Giulia ; Capece, Luciana ; Gerger, Thomas Martin ; Micheletti, Cristian ; Varani, Gabriele ; Carloni, Paolo</creatorcontrib><description>The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja507812v</identifier><identifier>PMID: 25313638</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>HIV-1 - genetics ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; RNA, Viral - chemistry ; RNA, Viral - genetics ; Transcriptional Activation</subject><ispartof>Journal of the American Chemical Society, 2014-11, Vol.136 (44), p.15631-15637</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</citedby><cites>FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja507812v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja507812v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25313638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Musiani, Francesco</creatorcontrib><creatorcontrib>Rossetti, Giulia</creatorcontrib><creatorcontrib>Capece, Luciana</creatorcontrib><creatorcontrib>Gerger, Thomas Martin</creatorcontrib><creatorcontrib>Micheletti, Cristian</creatorcontrib><creatorcontrib>Varani, Gabriele</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><title>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.</description><subject>HIV-1 - genetics</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>Transcriptional Activation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9uEzEQhy0EomnhwAsgX5DoYcFjx97NsQp_GqmAlASuq7FjF0e7drCzkXLjFXgbnocnwU1KkBAn2zPffCP5R8gzYK-AcXi9RsnqBvjuARmB5KySwNVDMmKM8apulDgj5zmvy3PMG3hMzrgUIJRoRuTnh9hZM3SY6Jt9wN6bTBe-L4WtjyHT2cqGrXd7uvS9pQuDnaXR0WkMLqb-AGFHp18x3NpM5zZvypTXhSr9f7GFLbvu7tQH-nfx3Jp4G_yhUdzXsy-_vv8AukwYMhZ-d5g_yXeWzj9ePSGPHHbZPr0_L8jnd2-X0-vq5tP72fTqpkIh2bZaaSUmYEytV8wgOtVgLbm2NXeNdqLWDUpQUmqupOWTMQJjOHFcuIaNxxrEBXl59G5S_DbYvG17n43tOgw2DrkFxYGDmkhR0MsjalLMOVnXbpLvMe1bYO1dUO0pqMI-v9cOurerE_knmQK8OAJocruOQyofmP8j-g1jlZ6x</recordid><startdate>20141105</startdate><enddate>20141105</enddate><creator>Musiani, Francesco</creator><creator>Rossetti, Giulia</creator><creator>Capece, Luciana</creator><creator>Gerger, Thomas Martin</creator><creator>Micheletti, Cristian</creator><creator>Varani, Gabriele</creator><creator>Carloni, Paolo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141105</creationdate><title>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</title><author>Musiani, Francesco ; Rossetti, Giulia ; Capece, Luciana ; Gerger, Thomas Martin ; Micheletti, Cristian ; Varani, Gabriele ; Carloni, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>HIV-1 - genetics</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musiani, Francesco</creatorcontrib><creatorcontrib>Rossetti, Giulia</creatorcontrib><creatorcontrib>Capece, Luciana</creatorcontrib><creatorcontrib>Gerger, Thomas Martin</creatorcontrib><creatorcontrib>Micheletti, Cristian</creatorcontrib><creatorcontrib>Varani, Gabriele</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musiani, Francesco</au><au>Rossetti, Giulia</au><au>Capece, Luciana</au><au>Gerger, Thomas Martin</au><au>Micheletti, Cristian</au><au>Varani, Gabriele</au><au>Carloni, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-11-05</date><risdate>2014</risdate><volume>136</volume><issue>44</issue><spage>15631</spage><epage>15637</epage><pages>15631-15637</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25313638</pmid><doi>10.1021/ja507812v</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2014-11, Vol.136 (44), p.15631-15637 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1621216953 |
source | MEDLINE; ACS Publications |
subjects | HIV-1 - genetics Molecular Dynamics Simulation Nucleic Acid Conformation RNA, Viral - chemistry RNA, Viral - genetics Transcriptional Activation |
title | Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20Identify%20Time%20Scale%20of%20Conformational%20Changes%20Responsible%20for%20Conformational%20Selection%20in%20Molecular%20Recognition%20of%20HIV%E2%80%911%20Transactivation%20Responsive%20RNA&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Musiani,%20Francesco&rft.date=2014-11-05&rft.volume=136&rft.issue=44&rft.spage=15631&rft.epage=15637&rft.pages=15631-15637&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja507812v&rft_dat=%3Cproquest_cross%3E1621216953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1621216953&rft_id=info:pmid/25313638&rfr_iscdi=true |