Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA

The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-11, Vol.136 (44), p.15631-15637
Hauptverfasser: Musiani, Francesco, Rossetti, Giulia, Capece, Luciana, Gerger, Thomas Martin, Micheletti, Cristian, Varani, Gabriele, Carloni, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15637
container_issue 44
container_start_page 15631
container_title Journal of the American Chemical Society
container_volume 136
creator Musiani, Francesco
Rossetti, Giulia
Capece, Luciana
Gerger, Thomas Martin
Micheletti, Cristian
Varani, Gabriele
Carloni, Paolo
description The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
doi_str_mv 10.1021/ja507812v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1621216953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1621216953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</originalsourceid><addsrcrecordid>eNptkc9uEzEQhy0EomnhwAsgX5DoYcFjx97NsQp_GqmAlASuq7FjF0e7drCzkXLjFXgbnocnwU1KkBAn2zPffCP5R8gzYK-AcXi9RsnqBvjuARmB5KySwNVDMmKM8apulDgj5zmvy3PMG3hMzrgUIJRoRuTnh9hZM3SY6Jt9wN6bTBe-L4WtjyHT2cqGrXd7uvS9pQuDnaXR0WkMLqb-AGFHp18x3NpM5zZvypTXhSr9f7GFLbvu7tQH-nfx3Jp4G_yhUdzXsy-_vv8AukwYMhZ-d5g_yXeWzj9ePSGPHHbZPr0_L8jnd2-X0-vq5tP72fTqpkIh2bZaaSUmYEytV8wgOtVgLbm2NXeNdqLWDUpQUmqupOWTMQJjOHFcuIaNxxrEBXl59G5S_DbYvG17n43tOgw2DrkFxYGDmkhR0MsjalLMOVnXbpLvMe1bYO1dUO0pqMI-v9cOurerE_knmQK8OAJocruOQyofmP8j-g1jlZ6x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1621216953</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</title><source>MEDLINE</source><source>ACS Publications</source><creator>Musiani, Francesco ; Rossetti, Giulia ; Capece, Luciana ; Gerger, Thomas Martin ; Micheletti, Cristian ; Varani, Gabriele ; Carloni, Paolo</creator><creatorcontrib>Musiani, Francesco ; Rossetti, Giulia ; Capece, Luciana ; Gerger, Thomas Martin ; Micheletti, Cristian ; Varani, Gabriele ; Carloni, Paolo</creatorcontrib><description>The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja507812v</identifier><identifier>PMID: 25313638</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>HIV-1 - genetics ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; RNA, Viral - chemistry ; RNA, Viral - genetics ; Transcriptional Activation</subject><ispartof>Journal of the American Chemical Society, 2014-11, Vol.136 (44), p.15631-15637</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</citedby><cites>FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja507812v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja507812v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25313638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Musiani, Francesco</creatorcontrib><creatorcontrib>Rossetti, Giulia</creatorcontrib><creatorcontrib>Capece, Luciana</creatorcontrib><creatorcontrib>Gerger, Thomas Martin</creatorcontrib><creatorcontrib>Micheletti, Cristian</creatorcontrib><creatorcontrib>Varani, Gabriele</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><title>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.</description><subject>HIV-1 - genetics</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>Transcriptional Activation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9uEzEQhy0EomnhwAsgX5DoYcFjx97NsQp_GqmAlASuq7FjF0e7drCzkXLjFXgbnocnwU1KkBAn2zPffCP5R8gzYK-AcXi9RsnqBvjuARmB5KySwNVDMmKM8apulDgj5zmvy3PMG3hMzrgUIJRoRuTnh9hZM3SY6Jt9wN6bTBe-L4WtjyHT2cqGrXd7uvS9pQuDnaXR0WkMLqb-AGFHp18x3NpM5zZvypTXhSr9f7GFLbvu7tQH-nfx3Jp4G_yhUdzXsy-_vv8AukwYMhZ-d5g_yXeWzj9ePSGPHHbZPr0_L8jnd2-X0-vq5tP72fTqpkIh2bZaaSUmYEytV8wgOtVgLbm2NXeNdqLWDUpQUmqupOWTMQJjOHFcuIaNxxrEBXl59G5S_DbYvG17n43tOgw2DrkFxYGDmkhR0MsjalLMOVnXbpLvMe1bYO1dUO0pqMI-v9cOurerE_knmQK8OAJocruOQyofmP8j-g1jlZ6x</recordid><startdate>20141105</startdate><enddate>20141105</enddate><creator>Musiani, Francesco</creator><creator>Rossetti, Giulia</creator><creator>Capece, Luciana</creator><creator>Gerger, Thomas Martin</creator><creator>Micheletti, Cristian</creator><creator>Varani, Gabriele</creator><creator>Carloni, Paolo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141105</creationdate><title>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</title><author>Musiani, Francesco ; Rossetti, Giulia ; Capece, Luciana ; Gerger, Thomas Martin ; Micheletti, Cristian ; Varani, Gabriele ; Carloni, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-db6391cc7bd0caaf68a752be72f8bf37b8a51655b265e294a100a9f23f8044b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>HIV-1 - genetics</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musiani, Francesco</creatorcontrib><creatorcontrib>Rossetti, Giulia</creatorcontrib><creatorcontrib>Capece, Luciana</creatorcontrib><creatorcontrib>Gerger, Thomas Martin</creatorcontrib><creatorcontrib>Micheletti, Cristian</creatorcontrib><creatorcontrib>Varani, Gabriele</creatorcontrib><creatorcontrib>Carloni, Paolo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musiani, Francesco</au><au>Rossetti, Giulia</au><au>Capece, Luciana</au><au>Gerger, Thomas Martin</au><au>Micheletti, Cristian</au><au>Varani, Gabriele</au><au>Carloni, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-11-05</date><risdate>2014</risdate><volume>136</volume><issue>44</issue><spage>15631</spage><epage>15637</epage><pages>15631-15637</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25313638</pmid><doi>10.1021/ja507812v</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-11, Vol.136 (44), p.15631-15637
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1621216953
source MEDLINE; ACS Publications
subjects HIV-1 - genetics
Molecular Dynamics Simulation
Nucleic Acid Conformation
RNA, Viral - chemistry
RNA, Viral - genetics
Transcriptional Activation
title Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV‑1 Transactivation Responsive RNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20Identify%20Time%20Scale%20of%20Conformational%20Changes%20Responsible%20for%20Conformational%20Selection%20in%20Molecular%20Recognition%20of%20HIV%E2%80%911%20Transactivation%20Responsive%20RNA&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Musiani,%20Francesco&rft.date=2014-11-05&rft.volume=136&rft.issue=44&rft.spage=15631&rft.epage=15637&rft.pages=15631-15637&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja507812v&rft_dat=%3Cproquest_cross%3E1621216953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1621216953&rft_id=info:pmid/25313638&rfr_iscdi=true