DC electric field induced phase array self-assembly of Au nanoparticles

In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2014-11, Vol.25 (46), p.465301-465301
Hauptverfasser: Yadavali, S, Sachan, R, Dyck, O, Kalyanaraman, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465301
container_issue 46
container_start_page 465301
container_title Nanotechnology
container_volume 25
creator Yadavali, S
Sachan, R
Dyck, O
Kalyanaraman, R
description In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization ( ), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas.
doi_str_mv 10.1088/0957-4484/25/46/465301
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1621214014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651437678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-af107c2ab77f5942affdfacd677b7e1d3b88e972dcef076d10f124639ed9ed1f3</originalsourceid><addsrcrecordid>eNqN0M9r2zAUwHFRNpos7b9QdBns4kVP1i8fS9Z2g8Iu61nI0hN1UGxPig_57-fgtDtu8ECXz9ODLyF3wL4CM2bLGqkrIYzYcrkVah5ZM7gia6gVVEpy84Gs39GKfCplzxiA4XBNVlzWUmou1-Tp245iQn_MnaexwxRo14fJY6DjqytIXc7uRAumWLlS8NCmEx0ivZ9o7_phdPnY-YTlhnyMLhW8vbwb8vL48Gv3vXr--fRjd_9ceQH6WLkITHvuWq2jbAR3MYbofFBatxoh1K0x2GgePEamVQAWgQtVNxjmgVhvyJfl3zEPvycsR3voiseUXI_DVCwoCaLWSpv_oBw4CDb7DVEL9XkoJWO0Y-4OLp8sMHvubc8p7Tml5dIKZZfe8-Ld5cbUHjC8r70FnsHnC3DFuxSz631X_jrTKNC1nh1fXDeMdj9MuZ8r_uv6H1yIlog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1621214014</pqid></control><display><type>article</type><title>DC electric field induced phase array self-assembly of Au nanoparticles</title><source>Institute of Physics Journals</source><creator>Yadavali, S ; Sachan, R ; Dyck, O ; Kalyanaraman, R</creator><creatorcontrib>Yadavali, S ; Sachan, R ; Dyck, O ; Kalyanaraman, R</creatorcontrib><description>In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization ( ), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/25/46/465301</identifier><identifier>PMID: 25355725</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Arrays ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Direct current ; electric field ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Gold ; interference ; Lasers ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; phase array ; Physics ; pulsed laser ; Radiation effects on specific materials ; Self assembly ; Silicon substrates ; Silver ; Specific phase transitions ; Structural transitions in nanoscale materials ; Structure of solids and liquids; crystallography</subject><ispartof>Nanotechnology, 2014-11, Vol.25 (46), p.465301-465301</ispartof><rights>2014 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-af107c2ab77f5942affdfacd677b7e1d3b88e972dcef076d10f124639ed9ed1f3</citedby><cites>FETCH-LOGICAL-c417t-af107c2ab77f5942affdfacd677b7e1d3b88e972dcef076d10f124639ed9ed1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/25/46/465301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28961737$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25355725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadavali, S</creatorcontrib><creatorcontrib>Sachan, R</creatorcontrib><creatorcontrib>Dyck, O</creatorcontrib><creatorcontrib>Kalyanaraman, R</creatorcontrib><title>DC electric field induced phase array self-assembly of Au nanoparticles</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization ( ), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas.</description><subject>Arrays</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct current</subject><subject>electric field</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>interference</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>phase array</subject><subject>Physics</subject><subject>pulsed laser</subject><subject>Radiation effects on specific materials</subject><subject>Self assembly</subject><subject>Silicon substrates</subject><subject>Silver</subject><subject>Specific phase transitions</subject><subject>Structural transitions in nanoscale materials</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0M9r2zAUwHFRNpos7b9QdBns4kVP1i8fS9Z2g8Iu61nI0hN1UGxPig_57-fgtDtu8ECXz9ODLyF3wL4CM2bLGqkrIYzYcrkVah5ZM7gia6gVVEpy84Gs39GKfCplzxiA4XBNVlzWUmou1-Tp245iQn_MnaexwxRo14fJY6DjqytIXc7uRAumWLlS8NCmEx0ivZ9o7_phdPnY-YTlhnyMLhW8vbwb8vL48Gv3vXr--fRjd_9ceQH6WLkITHvuWq2jbAR3MYbofFBatxoh1K0x2GgePEamVQAWgQtVNxjmgVhvyJfl3zEPvycsR3voiseUXI_DVCwoCaLWSpv_oBw4CDb7DVEL9XkoJWO0Y-4OLp8sMHvubc8p7Tml5dIKZZfe8-Ld5cbUHjC8r70FnsHnC3DFuxSz631X_jrTKNC1nh1fXDeMdj9MuZ8r_uv6H1yIlog</recordid><startdate>20141121</startdate><enddate>20141121</enddate><creator>Yadavali, S</creator><creator>Sachan, R</creator><creator>Dyck, O</creator><creator>Kalyanaraman, R</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141121</creationdate><title>DC electric field induced phase array self-assembly of Au nanoparticles</title><author>Yadavali, S ; Sachan, R ; Dyck, O ; Kalyanaraman, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-af107c2ab77f5942affdfacd677b7e1d3b88e972dcef076d10f124639ed9ed1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arrays</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct current</topic><topic>electric field</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>interference</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>phase array</topic><topic>Physics</topic><topic>pulsed laser</topic><topic>Radiation effects on specific materials</topic><topic>Self assembly</topic><topic>Silicon substrates</topic><topic>Silver</topic><topic>Specific phase transitions</topic><topic>Structural transitions in nanoscale materials</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadavali, S</creatorcontrib><creatorcontrib>Sachan, R</creatorcontrib><creatorcontrib>Dyck, O</creatorcontrib><creatorcontrib>Kalyanaraman, R</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadavali, S</au><au>Sachan, R</au><au>Dyck, O</au><au>Kalyanaraman, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC electric field induced phase array self-assembly of Au nanoparticles</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2014-11-21</date><risdate>2014</risdate><volume>25</volume><issue>46</issue><spage>465301</spage><epage>465301</epage><pages>465301-465301</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization ( ), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>25355725</pmid><doi>10.1088/0957-4484/25/46/465301</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2014-11, Vol.25 (46), p.465301-465301
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_1621214014
source Institute of Physics Journals
subjects Arrays
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Direct current
electric field
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Gold
interference
Lasers
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
phase array
Physics
pulsed laser
Radiation effects on specific materials
Self assembly
Silicon substrates
Silver
Specific phase transitions
Structural transitions in nanoscale materials
Structure of solids and liquids
crystallography
title DC electric field induced phase array self-assembly of Au nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%20electric%20field%20induced%20phase%20array%20self-assembly%20of%20Au%20nanoparticles&rft.jtitle=Nanotechnology&rft.au=Yadavali,%20S&rft.date=2014-11-21&rft.volume=25&rft.issue=46&rft.spage=465301&rft.epage=465301&rft.pages=465301-465301&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/25/46/465301&rft_dat=%3Cproquest_pasca%3E1651437678%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1621214014&rft_id=info:pmid/25355725&rfr_iscdi=true