Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction
Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For c...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2012-05, Vol.14 (20), p.7392-7399 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7399 |
---|---|
container_issue | 20 |
container_start_page | 7392 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | RUIYONG CHEN TRIEU, Vinh ZERADJANIN, Aleksandar R NATTER, Harald TESCHNER, Detre KINTRUP, Jürgen BULAN, Andreas SCHUHMANN, Wolfgang HEMPELMANN, Rolf |
description | Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging. |
doi_str_mv | 10.1039/c2cp41163f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620103488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011182331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</originalsourceid><addsrcrecordid>eNqF0E1LwzAYwPEgitPpxQ8gvQgiVPPWND3K8A0mXvQmlOxJ6iJtU5NU8NubsbkdPeWB_PJA_gidEXxNMKtugMLACRGs2UNHhAuWV1jy_e1cigk6DuETY0wKwg7RhNKCEUnFEXp_tuBdiH6EOHrVZrYbFMTMNZnqnbaQgVPR9h8hc30WlyYzrYHoHSxNZyE9gGXrvO3Txbdrx2gT8yatSMMJOmhUG8zp5pyit_u719ljPn95eJrdznNgUsScmkoJJbVsKiC0KIU2ppBcCaC6ZHrBSsVw-iDWDQdVgK6o0JRSoySUnJdsii7XewfvvkYTYt3ZAKZtVW_cGGoiKE6luJT_U0xIKsMYSfRqTVeBgjdNPXjbKf-TUL0KX-_CJ3y-2TsuOqO39K90AhcboELK1njVgw07V8iyxJyxX8lQjBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011182331</pqid></control><display><type>article</type><title>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>RUIYONG CHEN ; TRIEU, Vinh ; ZERADJANIN, Aleksandar R ; NATTER, Harald ; TESCHNER, Detre ; KINTRUP, Jürgen ; BULAN, Andreas ; SCHUHMANN, Wolfgang ; HEMPELMANN, Rolf</creator><creatorcontrib>RUIYONG CHEN ; TRIEU, Vinh ; ZERADJANIN, Aleksandar R ; NATTER, Harald ; TESCHNER, Detre ; KINTRUP, Jürgen ; BULAN, Andreas ; SCHUHMANN, Wolfgang ; HEMPELMANN, Rolf</creatorcontrib><description>Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp41163f</identifier><identifier>PMID: 22531826</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bubbles ; Catalysis ; Chemistry ; Chlorine - chemistry ; Coatings ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Electrochemical Techniques ; Electrodes ; Electrolytes ; Evolution ; Exact sciences and technology ; General and physical chemistry ; Microstructure ; Nanostructure ; Oxides - chemistry ; Phase Transition ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Porous materials ; Ruthenium - chemistry ; Surface chemistry ; Surface Properties ; Tin - chemistry ; Titanium ; Titanium - chemistry ; X-Ray Absorption Spectroscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-05, Vol.14 (20), p.7392-7399</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</citedby><cites>FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25877043$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22531826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RUIYONG CHEN</creatorcontrib><creatorcontrib>TRIEU, Vinh</creatorcontrib><creatorcontrib>ZERADJANIN, Aleksandar R</creatorcontrib><creatorcontrib>NATTER, Harald</creatorcontrib><creatorcontrib>TESCHNER, Detre</creatorcontrib><creatorcontrib>KINTRUP, Jürgen</creatorcontrib><creatorcontrib>BULAN, Andreas</creatorcontrib><creatorcontrib>SCHUHMANN, Wolfgang</creatorcontrib><creatorcontrib>HEMPELMANN, Rolf</creatorcontrib><title>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.</description><subject>Bubbles</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chlorine - chemistry</subject><subject>Coatings</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Oxides - chemistry</subject><subject>Phase Transition</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Porous materials</subject><subject>Ruthenium - chemistry</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><subject>Tin - chemistry</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1LwzAYwPEgitPpxQ8gvQgiVPPWND3K8A0mXvQmlOxJ6iJtU5NU8NubsbkdPeWB_PJA_gidEXxNMKtugMLACRGs2UNHhAuWV1jy_e1cigk6DuETY0wKwg7RhNKCEUnFEXp_tuBdiH6EOHrVZrYbFMTMNZnqnbaQgVPR9h8hc30WlyYzrYHoHSxNZyE9gGXrvO3Txbdrx2gT8yatSMMJOmhUG8zp5pyit_u719ljPn95eJrdznNgUsScmkoJJbVsKiC0KIU2ppBcCaC6ZHrBSsVw-iDWDQdVgK6o0JRSoySUnJdsii7XewfvvkYTYt3ZAKZtVW_cGGoiKE6luJT_U0xIKsMYSfRqTVeBgjdNPXjbKf-TUL0KX-_CJ3y-2TsuOqO39K90AhcboELK1njVgw07V8iyxJyxX8lQjBc</recordid><startdate>20120528</startdate><enddate>20120528</enddate><creator>RUIYONG CHEN</creator><creator>TRIEU, Vinh</creator><creator>ZERADJANIN, Aleksandar R</creator><creator>NATTER, Harald</creator><creator>TESCHNER, Detre</creator><creator>KINTRUP, Jürgen</creator><creator>BULAN, Andreas</creator><creator>SCHUHMANN, Wolfgang</creator><creator>HEMPELMANN, Rolf</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120528</creationdate><title>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</title><author>RUIYONG CHEN ; TRIEU, Vinh ; ZERADJANIN, Aleksandar R ; NATTER, Harald ; TESCHNER, Detre ; KINTRUP, Jürgen ; BULAN, Andreas ; SCHUHMANN, Wolfgang ; HEMPELMANN, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bubbles</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chlorine - chemistry</topic><topic>Coatings</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Oxides - chemistry</topic><topic>Phase Transition</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Porous materials</topic><topic>Ruthenium - chemistry</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><topic>Tin - chemistry</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RUIYONG CHEN</creatorcontrib><creatorcontrib>TRIEU, Vinh</creatorcontrib><creatorcontrib>ZERADJANIN, Aleksandar R</creatorcontrib><creatorcontrib>NATTER, Harald</creatorcontrib><creatorcontrib>TESCHNER, Detre</creatorcontrib><creatorcontrib>KINTRUP, Jürgen</creatorcontrib><creatorcontrib>BULAN, Andreas</creatorcontrib><creatorcontrib>SCHUHMANN, Wolfgang</creatorcontrib><creatorcontrib>HEMPELMANN, Rolf</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RUIYONG CHEN</au><au>TRIEU, Vinh</au><au>ZERADJANIN, Aleksandar R</au><au>NATTER, Harald</au><au>TESCHNER, Detre</au><au>KINTRUP, Jürgen</au><au>BULAN, Andreas</au><au>SCHUHMANN, Wolfgang</au><au>HEMPELMANN, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-05-28</date><risdate>2012</risdate><volume>14</volume><issue>20</issue><spage>7392</spage><epage>7399</epage><pages>7392-7399</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22531826</pmid><doi>10.1039/c2cp41163f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-05, Vol.14 (20), p.7392-7399 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620103488 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bubbles Catalysis Chemistry Chlorine - chemistry Coatings Colloidal gels. Colloidal sols Colloidal state and disperse state Electrochemical Techniques Electrodes Electrolytes Evolution Exact sciences and technology General and physical chemistry Microstructure Nanostructure Oxides - chemistry Phase Transition Physical and chemical studies. Granulometry. Electrokinetic phenomena Porous materials Ruthenium - chemistry Surface chemistry Surface Properties Tin - chemistry Titanium Titanium - chemistry X-Ray Absorption Spectroscopy |
title | Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20impact%20of%20anodic%20coatings%20on%20the%20electrochemical%20chlorine%20evolution%20reaction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=RUIYONG%20CHEN&rft.date=2012-05-28&rft.volume=14&rft.issue=20&rft.spage=7392&rft.epage=7399&rft.pages=7392-7399&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp41163f&rft_dat=%3Cproquest_cross%3E1011182331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011182331&rft_id=info:pmid/22531826&rfr_iscdi=true |