Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction

Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-05, Vol.14 (20), p.7392-7399
Hauptverfasser: RUIYONG CHEN, TRIEU, Vinh, ZERADJANIN, Aleksandar R, NATTER, Harald, TESCHNER, Detre, KINTRUP, Jürgen, BULAN, Andreas, SCHUHMANN, Wolfgang, HEMPELMANN, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7399
container_issue 20
container_start_page 7392
container_title Physical chemistry chemical physics : PCCP
container_volume 14
creator RUIYONG CHEN
TRIEU, Vinh
ZERADJANIN, Aleksandar R
NATTER, Harald
TESCHNER, Detre
KINTRUP, Jürgen
BULAN, Andreas
SCHUHMANN, Wolfgang
HEMPELMANN, Rolf
description Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.
doi_str_mv 10.1039/c2cp41163f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620103488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011182331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</originalsourceid><addsrcrecordid>eNqF0E1LwzAYwPEgitPpxQ8gvQgiVPPWND3K8A0mXvQmlOxJ6iJtU5NU8NubsbkdPeWB_PJA_gidEXxNMKtugMLACRGs2UNHhAuWV1jy_e1cigk6DuETY0wKwg7RhNKCEUnFEXp_tuBdiH6EOHrVZrYbFMTMNZnqnbaQgVPR9h8hc30WlyYzrYHoHSxNZyE9gGXrvO3Txbdrx2gT8yatSMMJOmhUG8zp5pyit_u719ljPn95eJrdznNgUsScmkoJJbVsKiC0KIU2ppBcCaC6ZHrBSsVw-iDWDQdVgK6o0JRSoySUnJdsii7XewfvvkYTYt3ZAKZtVW_cGGoiKE6luJT_U0xIKsMYSfRqTVeBgjdNPXjbKf-TUL0KX-_CJ3y-2TsuOqO39K90AhcboELK1njVgw07V8iyxJyxX8lQjBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011182331</pqid></control><display><type>article</type><title>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>RUIYONG CHEN ; TRIEU, Vinh ; ZERADJANIN, Aleksandar R ; NATTER, Harald ; TESCHNER, Detre ; KINTRUP, Jürgen ; BULAN, Andreas ; SCHUHMANN, Wolfgang ; HEMPELMANN, Rolf</creator><creatorcontrib>RUIYONG CHEN ; TRIEU, Vinh ; ZERADJANIN, Aleksandar R ; NATTER, Harald ; TESCHNER, Detre ; KINTRUP, Jürgen ; BULAN, Andreas ; SCHUHMANN, Wolfgang ; HEMPELMANN, Rolf</creatorcontrib><description>Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp41163f</identifier><identifier>PMID: 22531826</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bubbles ; Catalysis ; Chemistry ; Chlorine - chemistry ; Coatings ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Electrochemical Techniques ; Electrodes ; Electrolytes ; Evolution ; Exact sciences and technology ; General and physical chemistry ; Microstructure ; Nanostructure ; Oxides - chemistry ; Phase Transition ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Porous materials ; Ruthenium - chemistry ; Surface chemistry ; Surface Properties ; Tin - chemistry ; Titanium ; Titanium - chemistry ; X-Ray Absorption Spectroscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-05, Vol.14 (20), p.7392-7399</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</citedby><cites>FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25877043$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22531826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RUIYONG CHEN</creatorcontrib><creatorcontrib>TRIEU, Vinh</creatorcontrib><creatorcontrib>ZERADJANIN, Aleksandar R</creatorcontrib><creatorcontrib>NATTER, Harald</creatorcontrib><creatorcontrib>TESCHNER, Detre</creatorcontrib><creatorcontrib>KINTRUP, Jürgen</creatorcontrib><creatorcontrib>BULAN, Andreas</creatorcontrib><creatorcontrib>SCHUHMANN, Wolfgang</creatorcontrib><creatorcontrib>HEMPELMANN, Rolf</creatorcontrib><title>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.</description><subject>Bubbles</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chlorine - chemistry</subject><subject>Coatings</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Oxides - chemistry</subject><subject>Phase Transition</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Porous materials</subject><subject>Ruthenium - chemistry</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><subject>Tin - chemistry</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1LwzAYwPEgitPpxQ8gvQgiVPPWND3K8A0mXvQmlOxJ6iJtU5NU8NubsbkdPeWB_PJA_gidEXxNMKtugMLACRGs2UNHhAuWV1jy_e1cigk6DuETY0wKwg7RhNKCEUnFEXp_tuBdiH6EOHrVZrYbFMTMNZnqnbaQgVPR9h8hc30WlyYzrYHoHSxNZyE9gGXrvO3Txbdrx2gT8yatSMMJOmhUG8zp5pyit_u719ljPn95eJrdznNgUsScmkoJJbVsKiC0KIU2ppBcCaC6ZHrBSsVw-iDWDQdVgK6o0JRSoySUnJdsii7XewfvvkYTYt3ZAKZtVW_cGGoiKE6luJT_U0xIKsMYSfRqTVeBgjdNPXjbKf-TUL0KX-_CJ3y-2TsuOqO39K90AhcboELK1njVgw07V8iyxJyxX8lQjBc</recordid><startdate>20120528</startdate><enddate>20120528</enddate><creator>RUIYONG CHEN</creator><creator>TRIEU, Vinh</creator><creator>ZERADJANIN, Aleksandar R</creator><creator>NATTER, Harald</creator><creator>TESCHNER, Detre</creator><creator>KINTRUP, Jürgen</creator><creator>BULAN, Andreas</creator><creator>SCHUHMANN, Wolfgang</creator><creator>HEMPELMANN, Rolf</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120528</creationdate><title>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</title><author>RUIYONG CHEN ; TRIEU, Vinh ; ZERADJANIN, Aleksandar R ; NATTER, Harald ; TESCHNER, Detre ; KINTRUP, Jürgen ; BULAN, Andreas ; SCHUHMANN, Wolfgang ; HEMPELMANN, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-2e9a6a8d8f9c12576dee584a6c2d73db37a304110df4ca5cd926d222ea8c74473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bubbles</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chlorine - chemistry</topic><topic>Coatings</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Oxides - chemistry</topic><topic>Phase Transition</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Porous materials</topic><topic>Ruthenium - chemistry</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><topic>Tin - chemistry</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RUIYONG CHEN</creatorcontrib><creatorcontrib>TRIEU, Vinh</creatorcontrib><creatorcontrib>ZERADJANIN, Aleksandar R</creatorcontrib><creatorcontrib>NATTER, Harald</creatorcontrib><creatorcontrib>TESCHNER, Detre</creatorcontrib><creatorcontrib>KINTRUP, Jürgen</creatorcontrib><creatorcontrib>BULAN, Andreas</creatorcontrib><creatorcontrib>SCHUHMANN, Wolfgang</creatorcontrib><creatorcontrib>HEMPELMANN, Rolf</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RUIYONG CHEN</au><au>TRIEU, Vinh</au><au>ZERADJANIN, Aleksandar R</au><au>NATTER, Harald</au><au>TESCHNER, Detre</au><au>KINTRUP, Jürgen</au><au>BULAN, Andreas</au><au>SCHUHMANN, Wolfgang</au><au>HEMPELMANN, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-05-28</date><risdate>2012</risdate><volume>14</volume><issue>20</issue><spage>7392</spage><epage>7399</epage><pages>7392-7399</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22531826</pmid><doi>10.1039/c2cp41163f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2012-05, Vol.14 (20), p.7392-7399
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1620103488
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bubbles
Catalysis
Chemistry
Chlorine - chemistry
Coatings
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Electrochemical Techniques
Electrodes
Electrolytes
Evolution
Exact sciences and technology
General and physical chemistry
Microstructure
Nanostructure
Oxides - chemistry
Phase Transition
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Porous materials
Ruthenium - chemistry
Surface chemistry
Surface Properties
Tin - chemistry
Titanium
Titanium - chemistry
X-Ray Absorption Spectroscopy
title Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20impact%20of%20anodic%20coatings%20on%20the%20electrochemical%20chlorine%20evolution%20reaction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=RUIYONG%20CHEN&rft.date=2012-05-28&rft.volume=14&rft.issue=20&rft.spage=7392&rft.epage=7399&rft.pages=7392-7399&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp41163f&rft_dat=%3Cproquest_cross%3E1011182331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011182331&rft_id=info:pmid/22531826&rfr_iscdi=true