Numerical methods for a coupled system of differential equations arising from a thermal ignition problem
This article is concerned with monotone iterative methods for numerical solutions of a coupled system of a first‐order partial differential equation and an ordinary differential equation which arises from fast‐igniting catalytic converters in automobile engineering. The monotone iterative scheme yie...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2013-01, Vol.29 (1), p.251-279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1 |
container_start_page | 251 |
container_title | Numerical methods for partial differential equations |
container_volume | 29 |
creator | Pao, C.V. Chang, Yu-Hsien Jau, Guo-Chin |
description | This article is concerned with monotone iterative methods for numerical solutions of a coupled system of a first‐order partial differential equation and an ordinary differential equation which arises from fast‐igniting catalytic converters in automobile engineering. The monotone iterative scheme yields a straightforward marching process for the corresponding discrete system by the finite‐difference method, and it gives not only a computational algorithm for numerical solutions of the problem but also the existence and uniqueness of a finite‐difference solution. Particular attention is given to the “finite‐time” blow‐up property of the solution. In terms of minimal sequence of the monotone iterations, some necessary and sufficient conditions for the blow‐up solution are obtained. Also given is the convergence of the finite‐difference solution to the continuous solution as the mesh size tends to zero. Numerical results of the problem, including a case where the continuous solution is explicitly known, are presented and are compared with the known solution. Special attention is devoted to the computation of the blow‐up time and the critical value of a physical parameter which determines the global existence and the blow‐up property of the solution. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013 |
doi_str_mv | 10.1002/num.21708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620095051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827840481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-a0cbf5170bf553647b0b31b2b4e9e6a1c23c802fdc202b7571ab78620f1426463</originalsourceid><addsrcrecordid>eNp10MtOGzEUBmALgURIWfQNLLGBxZBjz30JEVfRVBUgurM8zjExjMeJPSPI29cQYIHUjb35fvucn5CfDI4ZAJ90gz3mrIRqi4wY1FXCM15skxGUWZ2wvP67S_ZCeAJgLGf1iCxmg0VvlGypxX7h5oFq56mkyg3LFuc0rEOPljpN50Zr9Nj1JmJcDbI3rgtUehNM90i1dzbm-gV6G4F57MwboEvvmhbtD7KjZRtw_-Mek_vzs7vpZXLz--JqenKTqLSoqkSCanQeF4hnnhZZ2UCTsoY3GdZYSKZ4qirgeq448KbMSyabsio4aBYXzYp0TA4378Z_VwOGXlgTFLat7NANQbBooc4hZ5EefKNPbvBdnE4wziGOU9dVVEcbpbwLwaMWS2-s9GvBQLx1LmLn4r3zaCcb-2JaXP8fitn9r89EskmYWPPrV0L6Z1GUaZmLh9mFmF0_3N7-qU7FNP0H5QeSvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220688998</pqid></control><display><type>article</type><title>Numerical methods for a coupled system of differential equations arising from a thermal ignition problem</title><source>Wiley-Blackwell Journals</source><creator>Pao, C.V. ; Chang, Yu-Hsien ; Jau, Guo-Chin</creator><creatorcontrib>Pao, C.V. ; Chang, Yu-Hsien ; Jau, Guo-Chin</creatorcontrib><description>This article is concerned with monotone iterative methods for numerical solutions of a coupled system of a first‐order partial differential equation and an ordinary differential equation which arises from fast‐igniting catalytic converters in automobile engineering. The monotone iterative scheme yields a straightforward marching process for the corresponding discrete system by the finite‐difference method, and it gives not only a computational algorithm for numerical solutions of the problem but also the existence and uniqueness of a finite‐difference solution. Particular attention is given to the “finite‐time” blow‐up property of the solution. In terms of minimal sequence of the monotone iterations, some necessary and sufficient conditions for the blow‐up solution are obtained. Also given is the convergence of the finite‐difference solution to the continuous solution as the mesh size tends to zero. Numerical results of the problem, including a case where the continuous solution is explicitly known, are presented and are compared with the known solution. Special attention is devoted to the computation of the blow‐up time and the critical value of a physical parameter which determines the global existence and the blow‐up property of the solution. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.21708</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Automotive engineering ; blow-up solution ; catalytic converter ; Differential equations ; Finite difference method ; finite difference solution ; Iterative methods ; Mathematical analysis ; Mathematical models ; monotone iteration ; Numerical analysis ; Partial differential equations ; system of first-order equations</subject><ispartof>Numerical methods for partial differential equations, 2013-01, Vol.29 (1), p.251-279</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-a0cbf5170bf553647b0b31b2b4e9e6a1c23c802fdc202b7571ab78620f1426463</citedby><cites>FETCH-LOGICAL-c3688-a0cbf5170bf553647b0b31b2b4e9e6a1c23c802fdc202b7571ab78620f1426463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.21708$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.21708$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pao, C.V.</creatorcontrib><creatorcontrib>Chang, Yu-Hsien</creatorcontrib><creatorcontrib>Jau, Guo-Chin</creatorcontrib><title>Numerical methods for a coupled system of differential equations arising from a thermal ignition problem</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>This article is concerned with monotone iterative methods for numerical solutions of a coupled system of a first‐order partial differential equation and an ordinary differential equation which arises from fast‐igniting catalytic converters in automobile engineering. The monotone iterative scheme yields a straightforward marching process for the corresponding discrete system by the finite‐difference method, and it gives not only a computational algorithm for numerical solutions of the problem but also the existence and uniqueness of a finite‐difference solution. Particular attention is given to the “finite‐time” blow‐up property of the solution. In terms of minimal sequence of the monotone iterations, some necessary and sufficient conditions for the blow‐up solution are obtained. Also given is the convergence of the finite‐difference solution to the continuous solution as the mesh size tends to zero. Numerical results of the problem, including a case where the continuous solution is explicitly known, are presented and are compared with the known solution. Special attention is devoted to the computation of the blow‐up time and the critical value of a physical parameter which determines the global existence and the blow‐up property of the solution. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013</description><subject>Automotive engineering</subject><subject>blow-up solution</subject><subject>catalytic converter</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>finite difference solution</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>monotone iteration</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>system of first-order equations</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10MtOGzEUBmALgURIWfQNLLGBxZBjz30JEVfRVBUgurM8zjExjMeJPSPI29cQYIHUjb35fvucn5CfDI4ZAJ90gz3mrIRqi4wY1FXCM15skxGUWZ2wvP67S_ZCeAJgLGf1iCxmg0VvlGypxX7h5oFq56mkyg3LFuc0rEOPljpN50Zr9Nj1JmJcDbI3rgtUehNM90i1dzbm-gV6G4F57MwboEvvmhbtD7KjZRtw_-Mek_vzs7vpZXLz--JqenKTqLSoqkSCanQeF4hnnhZZ2UCTsoY3GdZYSKZ4qirgeq448KbMSyabsio4aBYXzYp0TA4378Z_VwOGXlgTFLat7NANQbBooc4hZ5EefKNPbvBdnE4wziGOU9dVVEcbpbwLwaMWS2-s9GvBQLx1LmLn4r3zaCcb-2JaXP8fitn9r89EskmYWPPrV0L6Z1GUaZmLh9mFmF0_3N7-qU7FNP0H5QeSvw</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Pao, C.V.</creator><creator>Chang, Yu-Hsien</creator><creator>Jau, Guo-Chin</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Numerical methods for a coupled system of differential equations arising from a thermal ignition problem</title><author>Pao, C.V. ; Chang, Yu-Hsien ; Jau, Guo-Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-a0cbf5170bf553647b0b31b2b4e9e6a1c23c802fdc202b7571ab78620f1426463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automotive engineering</topic><topic>blow-up solution</topic><topic>catalytic converter</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>finite difference solution</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>monotone iteration</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>system of first-order equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pao, C.V.</creatorcontrib><creatorcontrib>Chang, Yu-Hsien</creatorcontrib><creatorcontrib>Jau, Guo-Chin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pao, C.V.</au><au>Chang, Yu-Hsien</au><au>Jau, Guo-Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical methods for a coupled system of differential equations arising from a thermal ignition problem</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2013-01</date><risdate>2013</risdate><volume>29</volume><issue>1</issue><spage>251</spage><epage>279</epage><pages>251-279</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>This article is concerned with monotone iterative methods for numerical solutions of a coupled system of a first‐order partial differential equation and an ordinary differential equation which arises from fast‐igniting catalytic converters in automobile engineering. The monotone iterative scheme yields a straightforward marching process for the corresponding discrete system by the finite‐difference method, and it gives not only a computational algorithm for numerical solutions of the problem but also the existence and uniqueness of a finite‐difference solution. Particular attention is given to the “finite‐time” blow‐up property of the solution. In terms of minimal sequence of the monotone iterations, some necessary and sufficient conditions for the blow‐up solution are obtained. Also given is the convergence of the finite‐difference solution to the continuous solution as the mesh size tends to zero. Numerical results of the problem, including a case where the continuous solution is explicitly known, are presented and are compared with the known solution. Special attention is devoted to the computation of the blow‐up time and the critical value of a physical parameter which determines the global existence and the blow‐up property of the solution. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/num.21708</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2013-01, Vol.29 (1), p.251-279 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620095051 |
source | Wiley-Blackwell Journals |
subjects | Automotive engineering blow-up solution catalytic converter Differential equations Finite difference method finite difference solution Iterative methods Mathematical analysis Mathematical models monotone iteration Numerical analysis Partial differential equations system of first-order equations |
title | Numerical methods for a coupled system of differential equations arising from a thermal ignition problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20methods%20for%20a%20coupled%20system%20of%20differential%20equations%20arising%20from%20a%20thermal%20ignition%20problem&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Pao,%20C.V.&rft.date=2013-01&rft.volume=29&rft.issue=1&rft.spage=251&rft.epage=279&rft.pages=251-279&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.21708&rft_dat=%3Cproquest_cross%3E2827840481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220688998&rft_id=info:pmid/&rfr_iscdi=true |