Extremal geometry of a Brownian porous medium

The path W [ 0 , t ] of a Brownian motion on a d -dimensional torus T d run for time t is a random compact subset of T d . We study the geometric properties of the complement T d \ W [ 0 , t ] as t → ∞ for d ≥ 3 . In particular, we show that the largest regions in T d \ W [ 0 , t ] have a linear sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2014-10, Vol.160 (1-2), p.127-174
Hauptverfasser: Goodman, Jesse, den Hollander, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 1-2
container_start_page 127
container_title Probability theory and related fields
container_volume 160
creator Goodman, Jesse
den Hollander, Frank
description The path W [ 0 , t ] of a Brownian motion on a d -dimensional torus T d run for time t is a random compact subset of T d . We study the geometric properties of the complement T d \ W [ 0 , t ] as t → ∞ for d ≥ 3 . In particular, we show that the largest regions in T d \ W [ 0 , t ] have a linear scale φ d ( t ) = [ ( d log t ) / ( d - 2 ) κ d t ] 1 / ( d - 2 ) , where κ d is the capacity of the unit ball. More specifically, we identify the sets E for which T d \ W [ 0 , t ] contains a translate of φ d ( t ) E , and we count the number of disjoint such translates. Furthermore, we derive large deviation principles for the largest inradius of T d \ W [ 0 , t ] as t → ∞ and the ε -cover time of T d as ε ↓ 0 . Our results, which generalise laws of large numbers proved by Dembo et al. (Electron J Probab 8(15):1–14, 2003 ), are based on a large deviation estimate for the shape of the component with largest capacity in T d \ W ρ ( t ) [ 0 , t ] , where W ρ ( t ) [ 0 , t ] is the Wiener sausage of radius ρ ( t ) , with ρ ( t ) chosen much smaller than φ d ( t ) but not too small. The idea behind this choice is that T d \ W [ 0 , t ] consists of “lakes”, whose linear size is of order φ d ( t ) , connected by narrow “channels”. We also derive large deviation principles for the principal Dirichlet eigenvalue and for the maximal volume of the components of T d \ W ρ ( t ) [ 0 , t ] as t → ∞ . Our results give a complete picture of the extremal geometry of T d \ W [ 0 , t ] and of the optimal strategy for W [ 0 , t ] to realise extreme events.
doi_str_mv 10.1007/s00440-013-0525-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620091160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620091160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-9b4bf15622fd40a1e94468105b87e2d472f4b45df7abb01137a160ad405d498e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQR4MouK5-AG8FL16iM-k0aY-6rH9gwYueQ7pNly5tsyYtut_eLPUggp7m8t7w4zF2iXCDAOo2ABABB0w5ZCLjxRGbIaWCC5B0zGaAKuc5ZHjKzkLYAoBIScwYX34O3namTTbWdXbw-8TViUnuvfvoG9MnO-fdGJLOVs3YnbOT2rTBXnzfOXt7WL4unvjq5fF5cbfiaxIw8KKkssZMClFXBAZtQSRzhKzMlRUVKVFTSVlVK1OWgJgqgxJMZLOKitymc3Y9_d159z7aMOiuCWvbtqa3cY1GKQAKjFJEr36hWzf6Pq7TQkoUsgDC_6i4E1SqKJWRwolaexeCt7Xe-aYzfq8R9CGznjLrmFkfMusiOmJyQmT7jfU_Pv8pfQHuAXvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560737436</pqid></control><display><type>article</type><title>Extremal geometry of a Brownian porous medium</title><source>Business Source® Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Goodman, Jesse ; den Hollander, Frank</creator><creatorcontrib>Goodman, Jesse ; den Hollander, Frank</creatorcontrib><description>The path W [ 0 , t ] of a Brownian motion on a d -dimensional torus T d run for time t is a random compact subset of T d . We study the geometric properties of the complement T d \ W [ 0 , t ] as t → ∞ for d ≥ 3 . In particular, we show that the largest regions in T d \ W [ 0 , t ] have a linear scale φ d ( t ) = [ ( d log t ) / ( d - 2 ) κ d t ] 1 / ( d - 2 ) , where κ d is the capacity of the unit ball. More specifically, we identify the sets E for which T d \ W [ 0 , t ] contains a translate of φ d ( t ) E , and we count the number of disjoint such translates. Furthermore, we derive large deviation principles for the largest inradius of T d \ W [ 0 , t ] as t → ∞ and the ε -cover time of T d as ε ↓ 0 . Our results, which generalise laws of large numbers proved by Dembo et al. (Electron J Probab 8(15):1–14, 2003 ), are based on a large deviation estimate for the shape of the component with largest capacity in T d \ W ρ ( t ) [ 0 , t ] , where W ρ ( t ) [ 0 , t ] is the Wiener sausage of radius ρ ( t ) , with ρ ( t ) chosen much smaller than φ d ( t ) but not too small. The idea behind this choice is that T d \ W [ 0 , t ] consists of “lakes”, whose linear size is of order φ d ( t ) , connected by narrow “channels”. We also derive large deviation principles for the principal Dirichlet eigenvalue and for the maximal volume of the components of T d \ W ρ ( t ) [ 0 , t ] as t → ∞ . Our results give a complete picture of the extremal geometry of T d \ W [ 0 , t ] and of the optimal strategy for W [ 0 , t ] to realise extreme events.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-013-0525-9</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brownian motion ; Channels ; Deviation ; Dirichlet problem ; Economics ; Eigenvalues ; Euclidean space ; Finance ; Geometry ; Insurance ; Lakes ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Porous media ; Principles ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Strategy ; Texts ; Theoretical ; Time &amp; motion studies ; Toruses</subject><ispartof>Probability theory and related fields, 2014-10, Vol.160 (1-2), p.127-174</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-9b4bf15622fd40a1e94468105b87e2d472f4b45df7abb01137a160ad405d498e3</citedby><cites>FETCH-LOGICAL-c420t-9b4bf15622fd40a1e94468105b87e2d472f4b45df7abb01137a160ad405d498e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-013-0525-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-013-0525-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Goodman, Jesse</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><title>Extremal geometry of a Brownian porous medium</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>The path W [ 0 , t ] of a Brownian motion on a d -dimensional torus T d run for time t is a random compact subset of T d . We study the geometric properties of the complement T d \ W [ 0 , t ] as t → ∞ for d ≥ 3 . In particular, we show that the largest regions in T d \ W [ 0 , t ] have a linear scale φ d ( t ) = [ ( d log t ) / ( d - 2 ) κ d t ] 1 / ( d - 2 ) , where κ d is the capacity of the unit ball. More specifically, we identify the sets E for which T d \ W [ 0 , t ] contains a translate of φ d ( t ) E , and we count the number of disjoint such translates. Furthermore, we derive large deviation principles for the largest inradius of T d \ W [ 0 , t ] as t → ∞ and the ε -cover time of T d as ε ↓ 0 . Our results, which generalise laws of large numbers proved by Dembo et al. (Electron J Probab 8(15):1–14, 2003 ), are based on a large deviation estimate for the shape of the component with largest capacity in T d \ W ρ ( t ) [ 0 , t ] , where W ρ ( t ) [ 0 , t ] is the Wiener sausage of radius ρ ( t ) , with ρ ( t ) chosen much smaller than φ d ( t ) but not too small. The idea behind this choice is that T d \ W [ 0 , t ] consists of “lakes”, whose linear size is of order φ d ( t ) , connected by narrow “channels”. We also derive large deviation principles for the principal Dirichlet eigenvalue and for the maximal volume of the components of T d \ W ρ ( t ) [ 0 , t ] as t → ∞ . Our results give a complete picture of the extremal geometry of T d \ W [ 0 , t ] and of the optimal strategy for W [ 0 , t ] to realise extreme events.</description><subject>Brownian motion</subject><subject>Channels</subject><subject>Deviation</subject><subject>Dirichlet problem</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Euclidean space</subject><subject>Finance</subject><subject>Geometry</subject><subject>Insurance</subject><subject>Lakes</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Porous media</subject><subject>Principles</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Strategy</subject><subject>Texts</subject><subject>Theoretical</subject><subject>Time &amp; motion studies</subject><subject>Toruses</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAQR4MouK5-AG8FL16iM-k0aY-6rH9gwYueQ7pNly5tsyYtut_eLPUggp7m8t7w4zF2iXCDAOo2ABABB0w5ZCLjxRGbIaWCC5B0zGaAKuc5ZHjKzkLYAoBIScwYX34O3namTTbWdXbw-8TViUnuvfvoG9MnO-fdGJLOVs3YnbOT2rTBXnzfOXt7WL4unvjq5fF5cbfiaxIw8KKkssZMClFXBAZtQSRzhKzMlRUVKVFTSVlVK1OWgJgqgxJMZLOKitymc3Y9_d159z7aMOiuCWvbtqa3cY1GKQAKjFJEr36hWzf6Pq7TQkoUsgDC_6i4E1SqKJWRwolaexeCt7Xe-aYzfq8R9CGznjLrmFkfMusiOmJyQmT7jfU_Pv8pfQHuAXvw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Goodman, Jesse</creator><creator>den Hollander, Frank</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>Extremal geometry of a Brownian porous medium</title><author>Goodman, Jesse ; den Hollander, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-9b4bf15622fd40a1e94468105b87e2d472f4b45df7abb01137a160ad405d498e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brownian motion</topic><topic>Channels</topic><topic>Deviation</topic><topic>Dirichlet problem</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Euclidean space</topic><topic>Finance</topic><topic>Geometry</topic><topic>Insurance</topic><topic>Lakes</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Porous media</topic><topic>Principles</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Strategy</topic><topic>Texts</topic><topic>Theoretical</topic><topic>Time &amp; motion studies</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodman, Jesse</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodman, Jesse</au><au>den Hollander, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal geometry of a Brownian porous medium</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>160</volume><issue>1-2</issue><spage>127</spage><epage>174</epage><pages>127-174</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>The path W [ 0 , t ] of a Brownian motion on a d -dimensional torus T d run for time t is a random compact subset of T d . We study the geometric properties of the complement T d \ W [ 0 , t ] as t → ∞ for d ≥ 3 . In particular, we show that the largest regions in T d \ W [ 0 , t ] have a linear scale φ d ( t ) = [ ( d log t ) / ( d - 2 ) κ d t ] 1 / ( d - 2 ) , where κ d is the capacity of the unit ball. More specifically, we identify the sets E for which T d \ W [ 0 , t ] contains a translate of φ d ( t ) E , and we count the number of disjoint such translates. Furthermore, we derive large deviation principles for the largest inradius of T d \ W [ 0 , t ] as t → ∞ and the ε -cover time of T d as ε ↓ 0 . Our results, which generalise laws of large numbers proved by Dembo et al. (Electron J Probab 8(15):1–14, 2003 ), are based on a large deviation estimate for the shape of the component with largest capacity in T d \ W ρ ( t ) [ 0 , t ] , where W ρ ( t ) [ 0 , t ] is the Wiener sausage of radius ρ ( t ) , with ρ ( t ) chosen much smaller than φ d ( t ) but not too small. The idea behind this choice is that T d \ W [ 0 , t ] consists of “lakes”, whose linear size is of order φ d ( t ) , connected by narrow “channels”. We also derive large deviation principles for the principal Dirichlet eigenvalue and for the maximal volume of the components of T d \ W ρ ( t ) [ 0 , t ] as t → ∞ . Our results give a complete picture of the extremal geometry of T d \ W [ 0 , t ] and of the optimal strategy for W [ 0 , t ] to realise extreme events.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-013-0525-9</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2014-10, Vol.160 (1-2), p.127-174
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1620091160
source Business Source® Complete; SpringerLink Journals - AutoHoldings
subjects Brownian motion
Channels
Deviation
Dirichlet problem
Economics
Eigenvalues
Euclidean space
Finance
Geometry
Insurance
Lakes
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Porous media
Principles
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Strategy
Texts
Theoretical
Time & motion studies
Toruses
title Extremal geometry of a Brownian porous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20geometry%20of%20a%20Brownian%20porous%20medium&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Goodman,%20Jesse&rft.date=2014-10-01&rft.volume=160&rft.issue=1-2&rft.spage=127&rft.epage=174&rft.pages=127-174&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-013-0525-9&rft_dat=%3Cproquest_cross%3E1620091160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560737436&rft_id=info:pmid/&rfr_iscdi=true