Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer Feed Forward Neural Network with Genetic Algorithm
The budget computation for software development is affected by the prediction of software development effort and schedule. Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a model for object-oriented software developm...
Gespeichert in:
Veröffentlicht in: | Advances in software engineering 2014-01, Vol.2014 (2014), p.1-6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | Advances in software engineering |
container_volume | 2014 |
creator | Yadav, Chandra Shekhar Singh, Raghuraj |
description | The budget computation for software development is affected by the prediction of software development effort and schedule. Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a model for object-oriented software development effort estimation using one hidden layer feed forward neural network (OHFNN) has been developed. The model has been further optimized with the help of genetic algorithm by taking weight vector obtained from OHFNN as initial population for the genetic algorithm. Convergence has been obtained by minimizing the sum of squared errors of each input vector and optimal weight vector has been determined to predict the software development effort. The model has been empirically validated on the PROMISE software engineering repository dataset. Performance of the model is more accurate than the well-established constructive cost model (COCOMO). |
doi_str_mv | 10.1155/2014/284531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620089459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3382068331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4211-1385cf43642bd3888271f80362ba89a33ece7583021e2f21a421082a53f09c63</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuBFFJTqybMQ8CJKNR-b3exRaj-EagX1vKS7E03dJjVJXfpD_L-mrnjwYi4ThicvQyZJjgm-JITzK4pJekVFyhnZSQ5IJvK-yDK2-3vnfD858n6B42EFzzE-SD4fHNS6CtoadGdraJCyDs3mC6gCmjkNJkCNHq0KrXSAbuADGrtaxjYaqkhj8UEv5XfAs9fmBc0MoImuazBoKjfg0AhixMi6mFCje1g72cQSWuveUKvDKxqDgaArdN28WBcby8NkT8nGw9FP7SVPo-HTYNKfzsa3g-tpX6aUkD5hglcqZVlK5zUTQtCcKIFZRudSFJIxqCDngmFKgCpKtq-woJIzhYsqY73krItdOfu-Bh_KpfYVNI00YNe-JBnFWBQpLyI9_UMXdu1MHK4kPM1zkRdMRHXRqcpZ7x2ocuXi57hNSXC5XVK5XVLZLSnq806_alPLVv-DTzoMkYCSvzjNMBWcfQGlT5m9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547787938</pqid></control><display><type>article</type><title>Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer Feed Forward Neural Network with Genetic Algorithm</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yadav, Chandra Shekhar ; Singh, Raghuraj</creator><contributor>Walker, Robert J.</contributor><creatorcontrib>Yadav, Chandra Shekhar ; Singh, Raghuraj ; Walker, Robert J.</creatorcontrib><description>The budget computation for software development is affected by the prediction of software development effort and schedule. Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a model for object-oriented software development effort estimation using one hidden layer feed forward neural network (OHFNN) has been developed. The model has been further optimized with the help of genetic algorithm by taking weight vector obtained from OHFNN as initial population for the genetic algorithm. Convergence has been obtained by minimizing the sum of squared errors of each input vector and optimal weight vector has been determined to predict the software development effort. The model has been empirically validated on the PROMISE software engineering repository dataset. Performance of the model is more accurate than the well-established constructive cost model (COCOMO).</description><identifier>ISSN: 1687-8655</identifier><identifier>EISSN: 1687-8663</identifier><identifier>DOI: 10.1155/2014/284531</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Architectural engineering ; Back propagation ; Computer science ; Genetic algorithms ; Mathematical analysis ; Mathematical models ; Mean square errors ; Mutation ; Neural networks ; Propagation ; Schedules ; Software development ; Software engineering ; Software reliability ; Vectors (mathematics)</subject><ispartof>Advances in software engineering, 2014-01, Vol.2014 (2014), p.1-6</ispartof><rights>Copyright © 2014 Chandra Shekhar Yadav and Raghuraj Singh.</rights><rights>Copyright © 2014 Chandra Shekhar Yadav and Raghuraj Singh. Chandra Shekhar Yadav et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4211-1385cf43642bd3888271f80362ba89a33ece7583021e2f21a421082a53f09c63</citedby><cites>FETCH-LOGICAL-a4211-1385cf43642bd3888271f80362ba89a33ece7583021e2f21a421082a53f09c63</cites><orcidid>0000-0002-9100-9806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Walker, Robert J.</contributor><creatorcontrib>Yadav, Chandra Shekhar</creatorcontrib><creatorcontrib>Singh, Raghuraj</creatorcontrib><title>Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer Feed Forward Neural Network with Genetic Algorithm</title><title>Advances in software engineering</title><description>The budget computation for software development is affected by the prediction of software development effort and schedule. Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a model for object-oriented software development effort estimation using one hidden layer feed forward neural network (OHFNN) has been developed. The model has been further optimized with the help of genetic algorithm by taking weight vector obtained from OHFNN as initial population for the genetic algorithm. Convergence has been obtained by minimizing the sum of squared errors of each input vector and optimal weight vector has been determined to predict the software development effort. The model has been empirically validated on the PROMISE software engineering repository dataset. Performance of the model is more accurate than the well-established constructive cost model (COCOMO).</description><subject>Architectural engineering</subject><subject>Back propagation</subject><subject>Computer science</subject><subject>Genetic algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Propagation</subject><subject>Schedules</subject><subject>Software development</subject><subject>Software engineering</subject><subject>Software reliability</subject><subject>Vectors (mathematics)</subject><issn>1687-8655</issn><issn>1687-8663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LAzEQBuBFFJTqybMQ8CJKNR-b3exRaj-EagX1vKS7E03dJjVJXfpD_L-mrnjwYi4ThicvQyZJjgm-JITzK4pJekVFyhnZSQ5IJvK-yDK2-3vnfD858n6B42EFzzE-SD4fHNS6CtoadGdraJCyDs3mC6gCmjkNJkCNHq0KrXSAbuADGrtaxjYaqkhj8UEv5XfAs9fmBc0MoImuazBoKjfg0AhixMi6mFCje1g72cQSWuveUKvDKxqDgaArdN28WBcby8NkT8nGw9FP7SVPo-HTYNKfzsa3g-tpX6aUkD5hglcqZVlK5zUTQtCcKIFZRudSFJIxqCDngmFKgCpKtq-woJIzhYsqY73krItdOfu-Bh_KpfYVNI00YNe-JBnFWBQpLyI9_UMXdu1MHK4kPM1zkRdMRHXRqcpZ7x2ocuXi57hNSXC5XVK5XVLZLSnq806_alPLVv-DTzoMkYCSvzjNMBWcfQGlT5m9</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Yadav, Chandra Shekhar</creator><creator>Singh, Raghuraj</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9100-9806</orcidid></search><sort><creationdate>20140101</creationdate><title>Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer Feed Forward Neural Network with Genetic Algorithm</title><author>Yadav, Chandra Shekhar ; Singh, Raghuraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4211-1385cf43642bd3888271f80362ba89a33ece7583021e2f21a421082a53f09c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Architectural engineering</topic><topic>Back propagation</topic><topic>Computer science</topic><topic>Genetic algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Propagation</topic><topic>Schedules</topic><topic>Software development</topic><topic>Software engineering</topic><topic>Software reliability</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Chandra Shekhar</creatorcontrib><creatorcontrib>Singh, Raghuraj</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Chandra Shekhar</au><au>Singh, Raghuraj</au><au>Walker, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer Feed Forward Neural Network with Genetic Algorithm</atitle><jtitle>Advances in software engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-8655</issn><eissn>1687-8663</eissn><abstract>The budget computation for software development is affected by the prediction of software development effort and schedule. Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a model for object-oriented software development effort estimation using one hidden layer feed forward neural network (OHFNN) has been developed. The model has been further optimized with the help of genetic algorithm by taking weight vector obtained from OHFNN as initial population for the genetic algorithm. Convergence has been obtained by minimizing the sum of squared errors of each input vector and optimal weight vector has been determined to predict the software development effort. The model has been empirically validated on the PROMISE software engineering repository dataset. Performance of the model is more accurate than the well-established constructive cost model (COCOMO).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2014/284531</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9100-9806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8655 |
ispartof | Advances in software engineering, 2014-01, Vol.2014 (2014), p.1-6 |
issn | 1687-8655 1687-8663 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620089459 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Architectural engineering Back propagation Computer science Genetic algorithms Mathematical analysis Mathematical models Mean square errors Mutation Neural networks Propagation Schedules Software development Software engineering Software reliability Vectors (mathematics) |
title | Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer Feed Forward Neural Network with Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20Model%20for%20Object%20Oriented%20Software%20Development%20Effort%20Estimation%20Using%20One%20Hidden%20Layer%20Feed%20Forward%20Neural%20Network%20with%20Genetic%20Algorithm&rft.jtitle=Advances%20in%20software%20engineering&rft.au=Yadav,%20Chandra%20Shekhar&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-8655&rft.eissn=1687-8663&rft_id=info:doi/10.1155/2014/284531&rft_dat=%3Cproquest_cross%3E3382068331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547787938&rft_id=info:pmid/&rfr_iscdi=true |