Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits

The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2014-09, Vol.37 (5), p.1415-1425
Hauptverfasser: Vishwajeet, Kumar, Singla, Puneet, Jah, Moriba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1425
container_issue 5
container_start_page 1415
container_title Journal of guidance, control, and dynamics
container_volume 37
creator Vishwajeet, Kumar
Singla, Puneet
Jah, Moriba
description The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.
doi_str_mv 10.2514/1.G000472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620087212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620087212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSCwwpNz5I04mBBUUpIp2aGfLiR2UKrWLnajqvyeonRiYbrhH751eQm4RJlQgf8TJDAC4pGdkhIKxlOU5PycjkAxTAQVckqsYNwDIMpQj8vTpXds4q0OydpUNnW5cd0iWwe_0l-4a75Lah2Q5bPpQWpOs9j598eaQLELZdPGaXNS6jfbmNMdk_fa6mr6n88XsY_o8TyuGeZdmRhpLoaCVFihrDpKC5aC1yYqypFRKi2gN1IILzYytgTMOLDcccwHSsDG5P-bugv_ubezUtomVbVvtrO-jwowC5JIiHejdH7rxfXDDd4rygousEPRfhSIbTouCikE9HFUVfIzB1moXmq0OB4WgfgtXqE6Fsx9pT29s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560385925</pqid></control><display><type>article</type><title>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</title><source>Alma/SFX Local Collection</source><creator>Vishwajeet, Kumar ; Singla, Puneet ; Jah, Moriba</creator><creatorcontrib>Vishwajeet, Kumar ; Singla, Puneet ; Jah, Moriba</creatorcontrib><description>The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000472</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Computational geometry ; Convexity ; Dynamic models ; Estimates ; Gaussian ; Kalman filters ; Kernels ; Mathematical analysis ; Mathematical models ; Methodology ; Nonlinearity ; Optimization ; Orbits ; Parameter estimation ; Probabilistic models ; Probability density functions ; Propagation ; Space surveillance ; Surveillance ; System dynamics ; Two body problem ; Uncertainty</subject><ispartof>Journal of guidance, control, and dynamics, 2014-09, Vol.37 (5), p.1415-1425</ispartof><rights>Copyright © 2014 by Puneet Singla. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</citedby><cites>FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vishwajeet, Kumar</creatorcontrib><creatorcontrib>Singla, Puneet</creatorcontrib><creatorcontrib>Jah, Moriba</creatorcontrib><title>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</title><title>Journal of guidance, control, and dynamics</title><description>The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.</description><subject>Aerospace engineering</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Dynamic models</subject><subject>Estimates</subject><subject>Gaussian</subject><subject>Kalman filters</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Orbits</subject><subject>Parameter estimation</subject><subject>Probabilistic models</subject><subject>Probability density functions</subject><subject>Propagation</subject><subject>Space surveillance</subject><subject>Surveillance</subject><subject>System dynamics</subject><subject>Two body problem</subject><subject>Uncertainty</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSCwwpNz5I04mBBUUpIp2aGfLiR2UKrWLnajqvyeonRiYbrhH751eQm4RJlQgf8TJDAC4pGdkhIKxlOU5PycjkAxTAQVckqsYNwDIMpQj8vTpXds4q0OydpUNnW5cd0iWwe_0l-4a75Lah2Q5bPpQWpOs9j598eaQLELZdPGaXNS6jfbmNMdk_fa6mr6n88XsY_o8TyuGeZdmRhpLoaCVFihrDpKC5aC1yYqypFRKi2gN1IILzYytgTMOLDcccwHSsDG5P-bugv_ubezUtomVbVvtrO-jwowC5JIiHejdH7rxfXDDd4rygousEPRfhSIbTouCikE9HFUVfIzB1moXmq0OB4WgfgtXqE6Fsx9pT29s</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Vishwajeet, Kumar</creator><creator>Singla, Puneet</creator><creator>Jah, Moriba</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</title><author>Vishwajeet, Kumar ; Singla, Puneet ; Jah, Moriba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace engineering</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Dynamic models</topic><topic>Estimates</topic><topic>Gaussian</topic><topic>Kalman filters</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Orbits</topic><topic>Parameter estimation</topic><topic>Probabilistic models</topic><topic>Probability density functions</topic><topic>Propagation</topic><topic>Space surveillance</topic><topic>Surveillance</topic><topic>System dynamics</topic><topic>Two body problem</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishwajeet, Kumar</creatorcontrib><creatorcontrib>Singla, Puneet</creatorcontrib><creatorcontrib>Jah, Moriba</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishwajeet, Kumar</au><au>Singla, Puneet</au><au>Jah, Moriba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>37</volume><issue>5</issue><spage>1415</spage><epage>1425</epage><pages>1415-1425</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000472</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2014-09, Vol.37 (5), p.1415-1425
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_1620087212
source Alma/SFX Local Collection
subjects Aerospace engineering
Computational geometry
Convexity
Dynamic models
Estimates
Gaussian
Kalman filters
Kernels
Mathematical analysis
Mathematical models
Methodology
Nonlinearity
Optimization
Orbits
Parameter estimation
Probabilistic models
Probability density functions
Propagation
Space surveillance
Surveillance
System dynamics
Two body problem
Uncertainty
title Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Uncertainty%20Propagation%20for%20Perturbed%20Two-Body%20Orbits&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Vishwajeet,%20Kumar&rft.date=2014-09-01&rft.volume=37&rft.issue=5&rft.spage=1415&rft.epage=1425&rft.pages=1415-1425&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000472&rft_dat=%3Cproquest_cross%3E1620087212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560385925&rft_id=info:pmid/&rfr_iscdi=true