Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits
The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the densit...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2014-09, Vol.37 (5), p.1415-1425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1425 |
---|---|
container_issue | 5 |
container_start_page | 1415 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 37 |
creator | Vishwajeet, Kumar Singla, Puneet Jah, Moriba |
description | The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas. |
doi_str_mv | 10.2514/1.G000472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620087212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620087212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSCwwpNz5I04mBBUUpIp2aGfLiR2UKrWLnajqvyeonRiYbrhH751eQm4RJlQgf8TJDAC4pGdkhIKxlOU5PycjkAxTAQVckqsYNwDIMpQj8vTpXds4q0OydpUNnW5cd0iWwe_0l-4a75Lah2Q5bPpQWpOs9j598eaQLELZdPGaXNS6jfbmNMdk_fa6mr6n88XsY_o8TyuGeZdmRhpLoaCVFihrDpKC5aC1yYqypFRKi2gN1IILzYytgTMOLDcccwHSsDG5P-bugv_ubezUtomVbVvtrO-jwowC5JIiHejdH7rxfXDDd4rygousEPRfhSIbTouCikE9HFUVfIzB1moXmq0OB4WgfgtXqE6Fsx9pT29s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560385925</pqid></control><display><type>article</type><title>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</title><source>Alma/SFX Local Collection</source><creator>Vishwajeet, Kumar ; Singla, Puneet ; Jah, Moriba</creator><creatorcontrib>Vishwajeet, Kumar ; Singla, Puneet ; Jah, Moriba</creatorcontrib><description>The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G000472</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Computational geometry ; Convexity ; Dynamic models ; Estimates ; Gaussian ; Kalman filters ; Kernels ; Mathematical analysis ; Mathematical models ; Methodology ; Nonlinearity ; Optimization ; Orbits ; Parameter estimation ; Probabilistic models ; Probability density functions ; Propagation ; Space surveillance ; Surveillance ; System dynamics ; Two body problem ; Uncertainty</subject><ispartof>Journal of guidance, control, and dynamics, 2014-09, Vol.37 (5), p.1415-1425</ispartof><rights>Copyright © 2014 by Puneet Singla. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</citedby><cites>FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vishwajeet, Kumar</creatorcontrib><creatorcontrib>Singla, Puneet</creatorcontrib><creatorcontrib>Jah, Moriba</creatorcontrib><title>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</title><title>Journal of guidance, control, and dynamics</title><description>The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.</description><subject>Aerospace engineering</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Dynamic models</subject><subject>Estimates</subject><subject>Gaussian</subject><subject>Kalman filters</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Orbits</subject><subject>Parameter estimation</subject><subject>Probabilistic models</subject><subject>Probability density functions</subject><subject>Propagation</subject><subject>Space surveillance</subject><subject>Surveillance</subject><subject>System dynamics</subject><subject>Two body problem</subject><subject>Uncertainty</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSCwwpNz5I04mBBUUpIp2aGfLiR2UKrWLnajqvyeonRiYbrhH751eQm4RJlQgf8TJDAC4pGdkhIKxlOU5PycjkAxTAQVckqsYNwDIMpQj8vTpXds4q0OydpUNnW5cd0iWwe_0l-4a75Lah2Q5bPpQWpOs9j598eaQLELZdPGaXNS6jfbmNMdk_fa6mr6n88XsY_o8TyuGeZdmRhpLoaCVFihrDpKC5aC1yYqypFRKi2gN1IILzYytgTMOLDcccwHSsDG5P-bugv_ubezUtomVbVvtrO-jwowC5JIiHejdH7rxfXDDd4rygousEPRfhSIbTouCikE9HFUVfIzB1moXmq0OB4WgfgtXqE6Fsx9pT29s</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Vishwajeet, Kumar</creator><creator>Singla, Puneet</creator><creator>Jah, Moriba</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</title><author>Vishwajeet, Kumar ; Singla, Puneet ; Jah, Moriba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-6d7de2092ca517f40720e40aad69bb2277e11ed0f545a3def0434038d418507d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace engineering</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Dynamic models</topic><topic>Estimates</topic><topic>Gaussian</topic><topic>Kalman filters</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Orbits</topic><topic>Parameter estimation</topic><topic>Probabilistic models</topic><topic>Probability density functions</topic><topic>Propagation</topic><topic>Space surveillance</topic><topic>Surveillance</topic><topic>System dynamics</topic><topic>Two body problem</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishwajeet, Kumar</creatorcontrib><creatorcontrib>Singla, Puneet</creatorcontrib><creatorcontrib>Jah, Moriba</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishwajeet, Kumar</au><au>Singla, Puneet</au><au>Jah, Moriba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>37</volume><issue>5</issue><spage>1415</spage><epage>1425</epage><pages>1415-1425</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G000472</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2014-09, Vol.37 (5), p.1415-1425 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620087212 |
source | Alma/SFX Local Collection |
subjects | Aerospace engineering Computational geometry Convexity Dynamic models Estimates Gaussian Kalman filters Kernels Mathematical analysis Mathematical models Methodology Nonlinearity Optimization Orbits Parameter estimation Probabilistic models Probability density functions Propagation Space surveillance Surveillance System dynamics Two body problem Uncertainty |
title | Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Uncertainty%20Propagation%20for%20Perturbed%20Two-Body%20Orbits&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Vishwajeet,%20Kumar&rft.date=2014-09-01&rft.volume=37&rft.issue=5&rft.spage=1415&rft.epage=1425&rft.pages=1415-1425&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G000472&rft_dat=%3Cproquest_cross%3E1620087212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560385925&rft_id=info:pmid/&rfr_iscdi=true |