Flow behavior of non-spherical particle flowing in hopper

Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in Energy 2014-09, Vol.8 (3), p.315-321
Hauptverfasser: TAO, He, ZHONG, Wenqi, JIN, Baosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 3
container_start_page 315
container_title Frontiers in Energy
container_volume 8
creator TAO, He
ZHONG, Wenqi
JIN, Baosheng
description Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.
doi_str_mv 10.1007/s11708-014-0331-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620082981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662830443</cqvip_id><sourcerecordid>1620082981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosoKLo_wFvRi5fqTNK0yVHELxC86Dm06XSbpSY12VX892apinjwMGQOzzt5ebLsGOEcAeqLiFiDLADLAjjHQu1kBwyUKLBScvd7rwH3s0WMKwBABAE1O8jUzejf85aG5s36kPs-d94VcRooWNOM-dSEtTUj5X3irFvm1uWDnyYKR9le34yRFl_vYfZ8c_10dVc8PN7eX10-FEZUYl2UXWM6aolEqYCDQVSlbNuOCRSiq1lPFSvTYNPJWhF0wJRRZcsFV2BYyw-zs_nuFPzrhuJav9hoaBwbR34TNVYMQDIlMaGnf9CV3wSX2mkUVVJT1RIShTNlgo8xUK-nYF-a8KER9Nannn3q5FNvfWqVMmzOxMS6JYVfl_8JyTk02GXySd0UKEbdB-_WlsL_0ZOvjoN3y9f05U_JqmKSQ1ly_gkolpNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560336780</pqid></control><display><type>article</type><title>Flow behavior of non-spherical particle flowing in hopper</title><source>Springer Nature - Complete Springer Journals</source><creator>TAO, He ; ZHONG, Wenqi ; JIN, Baosheng</creator><creatorcontrib>TAO, He ; ZHONG, Wenqi ; JIN, Baosheng</creatorcontrib><description>Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-014-0331-9</identifier><language>eng</language><publisher>Heidelberg: Higher Education Press</publisher><subject>Algorithms ; Applied mathematics ; Computer simulation ; Contact ; Discharge ; Discrete element method ; ellipsoidal particle ; Energy ; Energy Systems ; Experiments ; flow behavior ; Flow control ; Flow rates ; Grain ; hopper ; Hoppers ; Mass flow rate ; Mathematical analysis ; Pressure distribution ; Pressure drop ; Research Article ; Simulation ; Soybeans ; Studies ; Velocity ; Velocity distribution ; 料斗 ; 流动行为 ; 球形颗粒 ; 离散单元法 ; 粒子运动 ; 质量流量 ; 速度分布 ; 非球形粒子</subject><ispartof>Frontiers in Energy, 2014-09, Vol.8 (3), p.315-321</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</citedby><cites>FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71239X/71239X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11708-014-0331-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11708-014-0331-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>TAO, He</creatorcontrib><creatorcontrib>ZHONG, Wenqi</creatorcontrib><creatorcontrib>JIN, Baosheng</creatorcontrib><title>Flow behavior of non-spherical particle flowing in hopper</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><addtitle>Frontiers in Energy</addtitle><description>Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computer simulation</subject><subject>Contact</subject><subject>Discharge</subject><subject>Discrete element method</subject><subject>ellipsoidal particle</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Experiments</subject><subject>flow behavior</subject><subject>Flow control</subject><subject>Flow rates</subject><subject>Grain</subject><subject>hopper</subject><subject>Hoppers</subject><subject>Mass flow rate</subject><subject>Mathematical analysis</subject><subject>Pressure distribution</subject><subject>Pressure drop</subject><subject>Research Article</subject><subject>Simulation</subject><subject>Soybeans</subject><subject>Studies</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>料斗</subject><subject>流动行为</subject><subject>球形颗粒</subject><subject>离散单元法</subject><subject>粒子运动</subject><subject>质量流量</subject><subject>速度分布</subject><subject>非球形粒子</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhosoKLo_wFvRi5fqTNK0yVHELxC86Dm06XSbpSY12VX892apinjwMGQOzzt5ebLsGOEcAeqLiFiDLADLAjjHQu1kBwyUKLBScvd7rwH3s0WMKwBABAE1O8jUzejf85aG5s36kPs-d94VcRooWNOM-dSEtTUj5X3irFvm1uWDnyYKR9le34yRFl_vYfZ8c_10dVc8PN7eX10-FEZUYl2UXWM6aolEqYCDQVSlbNuOCRSiq1lPFSvTYNPJWhF0wJRRZcsFV2BYyw-zs_nuFPzrhuJav9hoaBwbR34TNVYMQDIlMaGnf9CV3wSX2mkUVVJT1RIShTNlgo8xUK-nYF-a8KER9Nannn3q5FNvfWqVMmzOxMS6JYVfl_8JyTk02GXySd0UKEbdB-_WlsL_0ZOvjoN3y9f05U_JqmKSQ1ly_gkolpNZ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>TAO, He</creator><creator>ZHONG, Wenqi</creator><creator>JIN, Baosheng</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20140901</creationdate><title>Flow behavior of non-spherical particle flowing in hopper</title><author>TAO, He ; ZHONG, Wenqi ; JIN, Baosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computer simulation</topic><topic>Contact</topic><topic>Discharge</topic><topic>Discrete element method</topic><topic>ellipsoidal particle</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Experiments</topic><topic>flow behavior</topic><topic>Flow control</topic><topic>Flow rates</topic><topic>Grain</topic><topic>hopper</topic><topic>Hoppers</topic><topic>Mass flow rate</topic><topic>Mathematical analysis</topic><topic>Pressure distribution</topic><topic>Pressure drop</topic><topic>Research Article</topic><topic>Simulation</topic><topic>Soybeans</topic><topic>Studies</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>料斗</topic><topic>流动行为</topic><topic>球形颗粒</topic><topic>离散单元法</topic><topic>粒子运动</topic><topic>质量流量</topic><topic>速度分布</topic><topic>非球形粒子</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAO, He</creatorcontrib><creatorcontrib>ZHONG, Wenqi</creatorcontrib><creatorcontrib>JIN, Baosheng</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAO, He</au><au>ZHONG, Wenqi</au><au>JIN, Baosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow behavior of non-spherical particle flowing in hopper</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><addtitle>Frontiers in Energy</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>3</issue><spage>315</spage><epage>321</epage><pages>315-321</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.</abstract><cop>Heidelberg</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-014-0331-9</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-1701
ispartof Frontiers in Energy, 2014-09, Vol.8 (3), p.315-321
issn 2095-1701
2095-1698
language eng
recordid cdi_proquest_miscellaneous_1620082981
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applied mathematics
Computer simulation
Contact
Discharge
Discrete element method
ellipsoidal particle
Energy
Energy Systems
Experiments
flow behavior
Flow control
Flow rates
Grain
hopper
Hoppers
Mass flow rate
Mathematical analysis
Pressure distribution
Pressure drop
Research Article
Simulation
Soybeans
Studies
Velocity
Velocity distribution
料斗
流动行为
球形颗粒
离散单元法
粒子运动
质量流量
速度分布
非球形粒子
title Flow behavior of non-spherical particle flowing in hopper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20behavior%20of%20non-spherical%20particle%20flowing%20in%20hopper&rft.jtitle=Frontiers%20in%20Energy&rft.au=TAO,%20He&rft.date=2014-09-01&rft.volume=8&rft.issue=3&rft.spage=315&rft.epage=321&rft.pages=315-321&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-014-0331-9&rft_dat=%3Cproquest_cross%3E1620082981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560336780&rft_id=info:pmid/&rft_cqvip_id=662830443&rfr_iscdi=true