Flow behavior of non-spherical particle flowing in hopper
Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by exper...
Gespeichert in:
Veröffentlicht in: | Frontiers in Energy 2014-09, Vol.8 (3), p.315-321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 3 |
container_start_page | 315 |
container_title | Frontiers in Energy |
container_volume | 8 |
creator | TAO, He ZHONG, Wenqi JIN, Baosheng |
description | Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal. |
doi_str_mv | 10.1007/s11708-014-0331-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620082981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662830443</cqvip_id><sourcerecordid>1620082981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosoKLo_wFvRi5fqTNK0yVHELxC86Dm06XSbpSY12VX892apinjwMGQOzzt5ebLsGOEcAeqLiFiDLADLAjjHQu1kBwyUKLBScvd7rwH3s0WMKwBABAE1O8jUzejf85aG5s36kPs-d94VcRooWNOM-dSEtTUj5X3irFvm1uWDnyYKR9le34yRFl_vYfZ8c_10dVc8PN7eX10-FEZUYl2UXWM6aolEqYCDQVSlbNuOCRSiq1lPFSvTYNPJWhF0wJRRZcsFV2BYyw-zs_nuFPzrhuJav9hoaBwbR34TNVYMQDIlMaGnf9CV3wSX2mkUVVJT1RIShTNlgo8xUK-nYF-a8KER9Nannn3q5FNvfWqVMmzOxMS6JYVfl_8JyTk02GXySd0UKEbdB-_WlsL_0ZOvjoN3y9f05U_JqmKSQ1ly_gkolpNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560336780</pqid></control><display><type>article</type><title>Flow behavior of non-spherical particle flowing in hopper</title><source>Springer Nature - Complete Springer Journals</source><creator>TAO, He ; ZHONG, Wenqi ; JIN, Baosheng</creator><creatorcontrib>TAO, He ; ZHONG, Wenqi ; JIN, Baosheng</creatorcontrib><description>Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-014-0331-9</identifier><language>eng</language><publisher>Heidelberg: Higher Education Press</publisher><subject>Algorithms ; Applied mathematics ; Computer simulation ; Contact ; Discharge ; Discrete element method ; ellipsoidal particle ; Energy ; Energy Systems ; Experiments ; flow behavior ; Flow control ; Flow rates ; Grain ; hopper ; Hoppers ; Mass flow rate ; Mathematical analysis ; Pressure distribution ; Pressure drop ; Research Article ; Simulation ; Soybeans ; Studies ; Velocity ; Velocity distribution ; 料斗 ; 流动行为 ; 球形颗粒 ; 离散单元法 ; 粒子运动 ; 质量流量 ; 速度分布 ; 非球形粒子</subject><ispartof>Frontiers in Energy, 2014-09, Vol.8 (3), p.315-321</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</citedby><cites>FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71239X/71239X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11708-014-0331-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11708-014-0331-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>TAO, He</creatorcontrib><creatorcontrib>ZHONG, Wenqi</creatorcontrib><creatorcontrib>JIN, Baosheng</creatorcontrib><title>Flow behavior of non-spherical particle flowing in hopper</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><addtitle>Frontiers in Energy</addtitle><description>Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computer simulation</subject><subject>Contact</subject><subject>Discharge</subject><subject>Discrete element method</subject><subject>ellipsoidal particle</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Experiments</subject><subject>flow behavior</subject><subject>Flow control</subject><subject>Flow rates</subject><subject>Grain</subject><subject>hopper</subject><subject>Hoppers</subject><subject>Mass flow rate</subject><subject>Mathematical analysis</subject><subject>Pressure distribution</subject><subject>Pressure drop</subject><subject>Research Article</subject><subject>Simulation</subject><subject>Soybeans</subject><subject>Studies</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>料斗</subject><subject>流动行为</subject><subject>球形颗粒</subject><subject>离散单元法</subject><subject>粒子运动</subject><subject>质量流量</subject><subject>速度分布</subject><subject>非球形粒子</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhosoKLo_wFvRi5fqTNK0yVHELxC86Dm06XSbpSY12VX892apinjwMGQOzzt5ebLsGOEcAeqLiFiDLADLAjjHQu1kBwyUKLBScvd7rwH3s0WMKwBABAE1O8jUzejf85aG5s36kPs-d94VcRooWNOM-dSEtTUj5X3irFvm1uWDnyYKR9le34yRFl_vYfZ8c_10dVc8PN7eX10-FEZUYl2UXWM6aolEqYCDQVSlbNuOCRSiq1lPFSvTYNPJWhF0wJRRZcsFV2BYyw-zs_nuFPzrhuJav9hoaBwbR34TNVYMQDIlMaGnf9CV3wSX2mkUVVJT1RIShTNlgo8xUK-nYF-a8KER9Nannn3q5FNvfWqVMmzOxMS6JYVfl_8JyTk02GXySd0UKEbdB-_WlsL_0ZOvjoN3y9f05U_JqmKSQ1ly_gkolpNZ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>TAO, He</creator><creator>ZHONG, Wenqi</creator><creator>JIN, Baosheng</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20140901</creationdate><title>Flow behavior of non-spherical particle flowing in hopper</title><author>TAO, He ; ZHONG, Wenqi ; JIN, Baosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-4dacdebee549030c11948bbd25155d72fe624e621ad879e0d029c94b35390c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computer simulation</topic><topic>Contact</topic><topic>Discharge</topic><topic>Discrete element method</topic><topic>ellipsoidal particle</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Experiments</topic><topic>flow behavior</topic><topic>Flow control</topic><topic>Flow rates</topic><topic>Grain</topic><topic>hopper</topic><topic>Hoppers</topic><topic>Mass flow rate</topic><topic>Mathematical analysis</topic><topic>Pressure distribution</topic><topic>Pressure drop</topic><topic>Research Article</topic><topic>Simulation</topic><topic>Soybeans</topic><topic>Studies</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>料斗</topic><topic>流动行为</topic><topic>球形颗粒</topic><topic>离散单元法</topic><topic>粒子运动</topic><topic>质量流量</topic><topic>速度分布</topic><topic>非球形粒子</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAO, He</creatorcontrib><creatorcontrib>ZHONG, Wenqi</creatorcontrib><creatorcontrib>JIN, Baosheng</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAO, He</au><au>ZHONG, Wenqi</au><au>JIN, Baosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow behavior of non-spherical particle flowing in hopper</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><addtitle>Frontiers in Energy</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>3</issue><spage>315</spage><epage>321</epage><pages>315-321</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>Ellipsoidal particles flowing in the hopper were simulated by using the discrete element method (DEM), and described by the multi-element method. The contact detection algorithm and equations for ellipsoidal particle motion in hopper were developed. And the simulation results were confirmed by experiment. Additionally, the mass flow rate, pressure distribution and velocity distribution of two kinds of particles were examined. The results show that the mass flow rate of ellipsoidal particles is smaller than that of spherical particles. There is a maximum value of pressure drop at the top of the junction. Besides, the pressure drop decreases with the discharging time increasing. The velocity of spherical particle is larger than that of ellipsoidal.</abstract><cop>Heidelberg</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-014-0331-9</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-1701 |
ispartof | Frontiers in Energy, 2014-09, Vol.8 (3), p.315-321 |
issn | 2095-1701 2095-1698 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620082981 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applied mathematics Computer simulation Contact Discharge Discrete element method ellipsoidal particle Energy Energy Systems Experiments flow behavior Flow control Flow rates Grain hopper Hoppers Mass flow rate Mathematical analysis Pressure distribution Pressure drop Research Article Simulation Soybeans Studies Velocity Velocity distribution 料斗 流动行为 球形颗粒 离散单元法 粒子运动 质量流量 速度分布 非球形粒子 |
title | Flow behavior of non-spherical particle flowing in hopper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20behavior%20of%20non-spherical%20particle%20flowing%20in%20hopper&rft.jtitle=Frontiers%20in%20Energy&rft.au=TAO,%20He&rft.date=2014-09-01&rft.volume=8&rft.issue=3&rft.spage=315&rft.epage=321&rft.pages=315-321&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-014-0331-9&rft_dat=%3Cproquest_cross%3E1620082981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560336780&rft_id=info:pmid/&rft_cqvip_id=662830443&rfr_iscdi=true |