DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface

A study of the dependence of the electronic structure and energetic stability on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using density functional theory (DFT) and the supercell technique. The pores were modeled by removing atoms in the [001] direction to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2014-01, Vol.2014 (2014), p.1-7
Hauptverfasser: Carvajal, Eliel, Crisóstomo, M. C., Iturrios, M. I., Trejo, A., Calvino, M., Cruz-Irisson, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2014
container_start_page 1
container_title Journal of nanomaterials
container_volume 2014
creator Carvajal, Eliel
Crisóstomo, M. C.
Iturrios, M. I.
Trejo, A.
Calvino, M.
Cruz-Irisson, M.
description A study of the dependence of the electronic structure and energetic stability on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using density functional theory (DFT) and the supercell technique. The pores were modeled by removing atoms in the [001] direction to produce a surface chemistry composed of only carbon atoms (C-phase). Changes in the electronic states of the porous structures were studied by using different passivation schemes: one with hydrogen (H) atoms and the others gradually replacing pairs of H atoms with oxygen (O) atoms, fluorine (F) atoms, and hydroxide (OH) radicals. The results indicate that the band gap behavior of the C-phase pSiC depends on the number of passivation agents (other than H) per supercell. The band gap decreased with an increasing number of F, O, or OH radical groups. Furthermore, the influence of the passivation of the pSiC on its surface relaxation and the differences in such parameters as bond lengths, bond angles, and cell volume are compared between all surfaces. The results indicate the possibility of nanostructure band gap engineering based on SiC via surface passivation agents.
doi_str_mv 10.1155/2014/471351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620073584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620073584</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-7e641cca6efb7652847497c43452e0cfc38d8ec2319f15713e8cef3846f5b4733</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqybsseBEldif7lRwltioUPbSCt7DdzNItbVJ3E0r_vSkRES-edth5GGbeKLoEeg8gxCihwEdcARNwFA1ApirmkGTHPzXQ0-gshBWlXGQiGUQfj5M5mTVtuSe1Jc0SyXiNpvF15Uz371vTtB4PvbxdOBPPXE5edVVva4-B7FyzJJrk8Rz9xlW6wZLMWm-1wfPoxOp1wIvvdxi9T8bz_Dmevj295A_TWHOZNLFCycEYLdEulBRJyhXPlOGMiwSpsYalZYomYZBZEN1lmBq0LOXSigVXjA2jm37u1tefLYam2LhgcL3WFdZtKEAmlComUt7R6z90Vbe-6rYrQHCVgRRUdOquV8bXIXi0xda7jfb7AmhxSLk4pFz0KXf6ttdLV5V65_7BVz3GjqDVvzAHIRn7Au58gyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547916505</pqid></control><display><type>article</type><title>DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Carvajal, Eliel ; Crisóstomo, M. C. ; Iturrios, M. I. ; Trejo, A. ; Calvino, M. ; Cruz-Irisson, M.</creator><contributor>Yeon, Sun-Hwa</contributor><creatorcontrib>Carvajal, Eliel ; Crisóstomo, M. C. ; Iturrios, M. I. ; Trejo, A. ; Calvino, M. ; Cruz-Irisson, M. ; Yeon, Sun-Hwa</creatorcontrib><description>A study of the dependence of the electronic structure and energetic stability on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using density functional theory (DFT) and the supercell technique. The pores were modeled by removing atoms in the [001] direction to produce a surface chemistry composed of only carbon atoms (C-phase). Changes in the electronic states of the porous structures were studied by using different passivation schemes: one with hydrogen (H) atoms and the others gradually replacing pairs of H atoms with oxygen (O) atoms, fluorine (F) atoms, and hydroxide (OH) radicals. The results indicate that the band gap behavior of the C-phase pSiC depends on the number of passivation agents (other than H) per supercell. The band gap decreased with an increasing number of F, O, or OH radical groups. Furthermore, the influence of the passivation of the pSiC on its surface relaxation and the differences in such parameters as bond lengths, bond angles, and cell volume are compared between all surfaces. The results indicate the possibility of nanostructure band gap engineering based on SiC via surface passivation agents.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2014/471351</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Atomic structure ; Bonding ; Electronic structure ; Hybridization ; Nanomaterials ; Passivation ; Porosity ; R&amp;D ; Radicals ; Research &amp; development ; Semiconductors ; Silicon carbide ; Theory ; Thunderstorms</subject><ispartof>Journal of nanomaterials, 2014-01, Vol.2014 (2014), p.1-7</ispartof><rights>Copyright © 2014 M. Calvino et al.</rights><rights>Copyright © 2014 M. Calvino et al. M. Calvino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-7e641cca6efb7652847497c43452e0cfc38d8ec2319f15713e8cef3846f5b4733</citedby><cites>FETCH-LOGICAL-a462t-7e641cca6efb7652847497c43452e0cfc38d8ec2319f15713e8cef3846f5b4733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yeon, Sun-Hwa</contributor><creatorcontrib>Carvajal, Eliel</creatorcontrib><creatorcontrib>Crisóstomo, M. C.</creatorcontrib><creatorcontrib>Iturrios, M. I.</creatorcontrib><creatorcontrib>Trejo, A.</creatorcontrib><creatorcontrib>Calvino, M.</creatorcontrib><creatorcontrib>Cruz-Irisson, M.</creatorcontrib><title>DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface</title><title>Journal of nanomaterials</title><description>A study of the dependence of the electronic structure and energetic stability on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using density functional theory (DFT) and the supercell technique. The pores were modeled by removing atoms in the [001] direction to produce a surface chemistry composed of only carbon atoms (C-phase). Changes in the electronic states of the porous structures were studied by using different passivation schemes: one with hydrogen (H) atoms and the others gradually replacing pairs of H atoms with oxygen (O) atoms, fluorine (F) atoms, and hydroxide (OH) radicals. The results indicate that the band gap behavior of the C-phase pSiC depends on the number of passivation agents (other than H) per supercell. The band gap decreased with an increasing number of F, O, or OH radical groups. Furthermore, the influence of the passivation of the pSiC on its surface relaxation and the differences in such parameters as bond lengths, bond angles, and cell volume are compared between all surfaces. The results indicate the possibility of nanostructure band gap engineering based on SiC via surface passivation agents.</description><subject>Atomic structure</subject><subject>Bonding</subject><subject>Electronic structure</subject><subject>Hybridization</subject><subject>Nanomaterials</subject><subject>Passivation</subject><subject>Porosity</subject><subject>R&amp;D</subject><subject>Radicals</subject><subject>Research &amp; development</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Theory</subject><subject>Thunderstorms</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqybsseBEldif7lRwltioUPbSCt7DdzNItbVJ3E0r_vSkRES-edth5GGbeKLoEeg8gxCihwEdcARNwFA1ApirmkGTHPzXQ0-gshBWlXGQiGUQfj5M5mTVtuSe1Jc0SyXiNpvF15Uz371vTtB4PvbxdOBPPXE5edVVva4-B7FyzJJrk8Rz9xlW6wZLMWm-1wfPoxOp1wIvvdxi9T8bz_Dmevj295A_TWHOZNLFCycEYLdEulBRJyhXPlOGMiwSpsYalZYomYZBZEN1lmBq0LOXSigVXjA2jm37u1tefLYam2LhgcL3WFdZtKEAmlComUt7R6z90Vbe-6rYrQHCVgRRUdOquV8bXIXi0xda7jfb7AmhxSLk4pFz0KXf6ttdLV5V65_7BVz3GjqDVvzAHIRn7Au58gyU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Carvajal, Eliel</creator><creator>Crisóstomo, M. C.</creator><creator>Iturrios, M. I.</creator><creator>Trejo, A.</creator><creator>Calvino, M.</creator><creator>Cruz-Irisson, M.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140101</creationdate><title>DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface</title><author>Carvajal, Eliel ; Crisóstomo, M. C. ; Iturrios, M. I. ; Trejo, A. ; Calvino, M. ; Cruz-Irisson, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-7e641cca6efb7652847497c43452e0cfc38d8ec2319f15713e8cef3846f5b4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic structure</topic><topic>Bonding</topic><topic>Electronic structure</topic><topic>Hybridization</topic><topic>Nanomaterials</topic><topic>Passivation</topic><topic>Porosity</topic><topic>R&amp;D</topic><topic>Radicals</topic><topic>Research &amp; development</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Theory</topic><topic>Thunderstorms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvajal, Eliel</creatorcontrib><creatorcontrib>Crisóstomo, M. C.</creatorcontrib><creatorcontrib>Iturrios, M. I.</creatorcontrib><creatorcontrib>Trejo, A.</creatorcontrib><creatorcontrib>Calvino, M.</creatorcontrib><creatorcontrib>Cruz-Irisson, M.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvajal, Eliel</au><au>Crisóstomo, M. C.</au><au>Iturrios, M. I.</au><au>Trejo, A.</au><au>Calvino, M.</au><au>Cruz-Irisson, M.</au><au>Yeon, Sun-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface</atitle><jtitle>Journal of nanomaterials</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>A study of the dependence of the electronic structure and energetic stability on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using density functional theory (DFT) and the supercell technique. The pores were modeled by removing atoms in the [001] direction to produce a surface chemistry composed of only carbon atoms (C-phase). Changes in the electronic states of the porous structures were studied by using different passivation schemes: one with hydrogen (H) atoms and the others gradually replacing pairs of H atoms with oxygen (O) atoms, fluorine (F) atoms, and hydroxide (OH) radicals. The results indicate that the band gap behavior of the C-phase pSiC depends on the number of passivation agents (other than H) per supercell. The band gap decreased with an increasing number of F, O, or OH radical groups. Furthermore, the influence of the passivation of the pSiC on its surface relaxation and the differences in such parameters as bond lengths, bond angles, and cell volume are compared between all surfaces. The results indicate the possibility of nanostructure band gap engineering based on SiC via surface passivation agents.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/471351</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2014-01, Vol.2014 (2014), p.1-7
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_miscellaneous_1620073584
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atomic structure
Bonding
Electronic structure
Hybridization
Nanomaterials
Passivation
Porosity
R&D
Radicals
Research & development
Semiconductors
Silicon carbide
Theory
Thunderstorms
title DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20Study%20of%20the%20Electronic%20Structure%20of%20Cubic-SiC%20Nanopores%20with%20a%20C-Terminated%20Surface&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Carvajal,%20Eliel&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2014/471351&rft_dat=%3Cproquest_cross%3E1620073584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547916505&rft_id=info:pmid/&rfr_iscdi=true