Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells
Density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies have been applied in an attempt to improve the performance of the dye YD2-o-C8 which is characterized by 11.9–12.7 % efficiencies. We aimed at narrowing the band gap of YD2-o-C8 to extend the light harvesting region to nea...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2014-09, Vol.16 (9), p.1-17, Article 2579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 16 |
creator | Shalabi, A. S. El Mahdy, A. M. Assem, M. M. Taha, H. O. Soliman, K. A. |
description | Density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies have been applied in an attempt to improve the performance of the dye YD2-o-C8 which is characterized by 11.9–12.7 % efficiencies. We aimed at narrowing the band gap of YD2-o-C8 to extend the light harvesting region to near IR. This was done through replacing the porphyrin macrocycle by the tetraazaporphyrin (porphyrazin) macrocycle, so that the performances of the suggested cells could be improved with Ti
38
O
76
, (TiO
2
)
60
, SiC, ZrO
2
, and GaP semiconductor electrodes. The effects of modifying the central macrocycle on cell performance are confirmed in terms of FMOs, energy gaps, electrode (VB and CB) edges, density of states (DOS), MEPs, dipole moments, IP, EA, reorganization energies, UV–Vis absorption, Φ
LHE
, Φ
injection
, and life times of the excited states. Replacing porphyrin macrocycle by porphyrazin macrocycle resulted in charge separated states, unidirectional charge transfer, narrower band gaps, increase of DOS nearby Fermi levels, asymmetric polarization, delocalization of the negative charges near the anchoring groups, efficient electron injection, suppressing macrocycle aggregation, active dye regeneration, longer life times of the excited states, and inhibited dye recombination. Co-sensitizers are suggested for near IR sensitization to improve the photo-to-current conversion efficiency. Size ranges: for dyes (0.1–1 nm), and for pore diameters of a dye sensitized mesoporous film of TiO
2
(2–50 nm). |
doi_str_mv | 10.1007/s11051-014-2579-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620063212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620063212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-91ebe36f17d14d0c950e59bbeb039cec0939e842d0e3d366cfd09297777bf4ab3</originalsourceid><addsrcrecordid>eNp1kMFq3DAQhk1podtNHiA3QSj04mRGlmXpWELTFgK5JCQ3IcujWMGxNpL3sPv01bKhlEJ0kUDf_PzzVdUZwgUCdJcZEVqsAUXN207X6kO1wrbjtdLy8WN5N0rV0EnxufqS8zMASq75qnq4GykmWoKzE3OjTdYtlMLeLiHOLHo2hqdx2jHyPrhA88I2MW3GXbL7MLNhRyzTnMMS9jSwHCebmKNpyifVJ2-nTKdv97q6v_5xd_Wrvrn9-fvq-03tBMql1kg9NdJjN6AYwOkWqNV9Tz002pED3WhSgg9AzdBI6fwAmuuunN4L2zfr6tsxd5Pi65byYl5CPjSwM8VtNmVNANlw5AU9_w99jts0l3YGWymU5AKhUHikXIo5J_Jmk8KLTTuDYA6qzVG1KarNQbVRZebrW7LNxaNPdnYh_x3kSqlOyEM2P3K5fM1PlP5p8G74H2sgjyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564862410</pqid></control><display><type>article</type><title>Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shalabi, A. S. ; El Mahdy, A. M. ; Assem, M. M. ; Taha, H. O. ; Soliman, K. A.</creator><creatorcontrib>Shalabi, A. S. ; El Mahdy, A. M. ; Assem, M. M. ; Taha, H. O. ; Soliman, K. A.</creatorcontrib><description>Density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies have been applied in an attempt to improve the performance of the dye YD2-o-C8 which is characterized by 11.9–12.7 % efficiencies. We aimed at narrowing the band gap of YD2-o-C8 to extend the light harvesting region to near IR. This was done through replacing the porphyrin macrocycle by the tetraazaporphyrin (porphyrazin) macrocycle, so that the performances of the suggested cells could be improved with Ti
38
O
76
, (TiO
2
)
60
, SiC, ZrO
2
, and GaP semiconductor electrodes. The effects of modifying the central macrocycle on cell performance are confirmed in terms of FMOs, energy gaps, electrode (VB and CB) edges, density of states (DOS), MEPs, dipole moments, IP, EA, reorganization energies, UV–Vis absorption, Φ
LHE
, Φ
injection
, and life times of the excited states. Replacing porphyrin macrocycle by porphyrazin macrocycle resulted in charge separated states, unidirectional charge transfer, narrower band gaps, increase of DOS nearby Fermi levels, asymmetric polarization, delocalization of the negative charges near the anchoring groups, efficient electron injection, suppressing macrocycle aggregation, active dye regeneration, longer life times of the excited states, and inhibited dye recombination. Co-sensitizers are suggested for near IR sensitization to improve the photo-to-current conversion efficiency. Size ranges: for dyes (0.1–1 nm), and for pore diameters of a dye sensitized mesoporous film of TiO
2
(2–50 nm).</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-014-2579-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Density of states ; Dyes ; Electrodes ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Energy ; Energy gaps (solid state) ; Exact sciences and technology ; Excitation ; Fullerenes and related materials ; Injection ; Inorganic Chemistry ; Lasers ; Materials Science ; Methods of electronic structure calculations ; Nanoparticles ; Nanotechnology ; Natural energy ; Optical Devices ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optics ; Photonics ; Photovoltaic conversion ; Physical Chemistry ; Physics ; Porphyrins ; Research Paper ; Semiconductors ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Titanium dioxide ; Visible and ultraviolet spectra</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-09, Vol.16 (9), p.1-17, Article 2579</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-91ebe36f17d14d0c950e59bbeb039cec0939e842d0e3d366cfd09297777bf4ab3</citedby><cites>FETCH-LOGICAL-c416t-91ebe36f17d14d0c950e59bbeb039cec0939e842d0e3d366cfd09297777bf4ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-014-2579-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-014-2579-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28887460$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shalabi, A. S.</creatorcontrib><creatorcontrib>El Mahdy, A. M.</creatorcontrib><creatorcontrib>Assem, M. M.</creatorcontrib><creatorcontrib>Taha, H. O.</creatorcontrib><creatorcontrib>Soliman, K. A.</creatorcontrib><title>Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies have been applied in an attempt to improve the performance of the dye YD2-o-C8 which is characterized by 11.9–12.7 % efficiencies. We aimed at narrowing the band gap of YD2-o-C8 to extend the light harvesting region to near IR. This was done through replacing the porphyrin macrocycle by the tetraazaporphyrin (porphyrazin) macrocycle, so that the performances of the suggested cells could be improved with Ti
38
O
76
, (TiO
2
)
60
, SiC, ZrO
2
, and GaP semiconductor electrodes. The effects of modifying the central macrocycle on cell performance are confirmed in terms of FMOs, energy gaps, electrode (VB and CB) edges, density of states (DOS), MEPs, dipole moments, IP, EA, reorganization energies, UV–Vis absorption, Φ
LHE
, Φ
injection
, and life times of the excited states. Replacing porphyrin macrocycle by porphyrazin macrocycle resulted in charge separated states, unidirectional charge transfer, narrower band gaps, increase of DOS nearby Fermi levels, asymmetric polarization, delocalization of the negative charges near the anchoring groups, efficient electron injection, suppressing macrocycle aggregation, active dye regeneration, longer life times of the excited states, and inhibited dye recombination. Co-sensitizers are suggested for near IR sensitization to improve the photo-to-current conversion efficiency. Size ranges: for dyes (0.1–1 nm), and for pore diameters of a dye sensitized mesoporous film of TiO
2
(2–50 nm).</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Density of states</subject><subject>Dyes</subject><subject>Electrodes</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Energy</subject><subject>Energy gaps (solid state)</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Fullerenes and related materials</subject><subject>Injection</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Methods of electronic structure calculations</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Natural energy</subject><subject>Optical Devices</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optics</subject><subject>Photonics</subject><subject>Photovoltaic conversion</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Porphyrins</subject><subject>Research Paper</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Titanium dioxide</subject><subject>Visible and ultraviolet spectra</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFq3DAQhk1podtNHiA3QSj04mRGlmXpWELTFgK5JCQ3IcujWMGxNpL3sPv01bKhlEJ0kUDf_PzzVdUZwgUCdJcZEVqsAUXN207X6kO1wrbjtdLy8WN5N0rV0EnxufqS8zMASq75qnq4GykmWoKzE3OjTdYtlMLeLiHOLHo2hqdx2jHyPrhA88I2MW3GXbL7MLNhRyzTnMMS9jSwHCebmKNpyifVJ2-nTKdv97q6v_5xd_Wrvrn9-fvq-03tBMql1kg9NdJjN6AYwOkWqNV9Tz002pED3WhSgg9AzdBI6fwAmuuunN4L2zfr6tsxd5Pi65byYl5CPjSwM8VtNmVNANlw5AU9_w99jts0l3YGWymU5AKhUHikXIo5J_Jmk8KLTTuDYA6qzVG1KarNQbVRZebrW7LNxaNPdnYh_x3kSqlOyEM2P3K5fM1PlP5p8G74H2sgjyo</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Shalabi, A. S.</creator><creator>El Mahdy, A. M.</creator><creator>Assem, M. M.</creator><creator>Taha, H. O.</creator><creator>Soliman, K. A.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SP</scope></search><sort><creationdate>20140901</creationdate><title>Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells</title><author>Shalabi, A. S. ; El Mahdy, A. M. ; Assem, M. M. ; Taha, H. O. ; Soliman, K. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-91ebe36f17d14d0c950e59bbeb039cec0939e842d0e3d366cfd09297777bf4ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Density of states</topic><topic>Dyes</topic><topic>Electrodes</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Energy</topic><topic>Energy gaps (solid state)</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Fullerenes and related materials</topic><topic>Injection</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Methods of electronic structure calculations</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Natural energy</topic><topic>Optical Devices</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optics</topic><topic>Photonics</topic><topic>Photovoltaic conversion</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Porphyrins</topic><topic>Research Paper</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Titanium dioxide</topic><topic>Visible and ultraviolet spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Shalabi, A. S.</creatorcontrib><creatorcontrib>El Mahdy, A. M.</creatorcontrib><creatorcontrib>Assem, M. M.</creatorcontrib><creatorcontrib>Taha, H. O.</creatorcontrib><creatorcontrib>Soliman, K. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalabi, A. S.</au><au>El Mahdy, A. M.</au><au>Assem, M. M.</au><au>Taha, H. O.</au><au>Soliman, K. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>16</volume><issue>9</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>2579</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies have been applied in an attempt to improve the performance of the dye YD2-o-C8 which is characterized by 11.9–12.7 % efficiencies. We aimed at narrowing the band gap of YD2-o-C8 to extend the light harvesting region to near IR. This was done through replacing the porphyrin macrocycle by the tetraazaporphyrin (porphyrazin) macrocycle, so that the performances of the suggested cells could be improved with Ti
38
O
76
, (TiO
2
)
60
, SiC, ZrO
2
, and GaP semiconductor electrodes. The effects of modifying the central macrocycle on cell performance are confirmed in terms of FMOs, energy gaps, electrode (VB and CB) edges, density of states (DOS), MEPs, dipole moments, IP, EA, reorganization energies, UV–Vis absorption, Φ
LHE
, Φ
injection
, and life times of the excited states. Replacing porphyrin macrocycle by porphyrazin macrocycle resulted in charge separated states, unidirectional charge transfer, narrower band gaps, increase of DOS nearby Fermi levels, asymmetric polarization, delocalization of the negative charges near the anchoring groups, efficient electron injection, suppressing macrocycle aggregation, active dye regeneration, longer life times of the excited states, and inhibited dye recombination. Co-sensitizers are suggested for near IR sensitization to improve the photo-to-current conversion efficiency. Size ranges: for dyes (0.1–1 nm), and for pore diameters of a dye sensitized mesoporous film of TiO
2
(2–50 nm).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-014-2579-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-09, Vol.16 (9), p.1-17, Article 2579 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_1620063212 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: electronic structure, electrical, magnetic, and optical properties Density of states Dyes Electrodes Electron states Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Energy Energy gaps (solid state) Exact sciences and technology Excitation Fullerenes and related materials Injection Inorganic Chemistry Lasers Materials Science Methods of electronic structure calculations Nanoparticles Nanotechnology Natural energy Optical Devices Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optics Photonics Photovoltaic conversion Physical Chemistry Physics Porphyrins Research Paper Semiconductors Solar cells Solar cells. Photoelectrochemical cells Solar energy Titanium dioxide Visible and ultraviolet spectra |
title | Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20characterization%20of%20highly%20efficient%20porphyrazin%20dye%20sensitized%20solar%20cells&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Shalabi,%20A.%20S.&rft.date=2014-09-01&rft.volume=16&rft.issue=9&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=2579&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-014-2579-8&rft_dat=%3Cproquest_cross%3E1620063212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564862410&rft_id=info:pmid/&rfr_iscdi=true |