Mixture of Trees Probabilistic Graphical Model for Video Segmentation
We present a novel mixture of trees probabilistic graphical model for semi-supervised video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. We provide a variational inference scheme...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2014-10, Vol.110 (1), p.14-29 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | International journal of computer vision |
container_volume | 110 |
creator | Badrinarayanan, Vijay Budvytis, Ignas Cipolla, Roberto |
description | We present a novel mixture of trees probabilistic graphical model for semi-supervised video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. We provide a variational inference scheme for this model to estimate super-pixel labels, their corresponding confidences, as well as the confidences in the temporal linkages. Our algorithm performs inference over full video volume which helps to avoid erroneous label propagation caused by using short time-window processing. In addition, our proposed inference scheme is very efficient both in terms of computational speed and use of RAM and so can be applied in real-time video segmentation scenarios. We bring out the pros and cons of our approach using extensive quantitative comparisons on challenging binary and multi-class video segmentation datasets. |
doi_str_mv | 10.1007/s11263-013-0673-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620062953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385801594</galeid><sourcerecordid>A385801594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-dd50a5f7c1726d8d0fb5430b3729c90a9dbea5587f55ea264f9b3e6f8ebb3dd13</originalsourceid><addsrcrecordid>eNp1kU1rHSEUhqW00Nu0P6C7gW7axSRHHZ1xGUKSBhIS8tGtOHq8Ncwdb9WB9N_XMF00gSLiQZ7n8MJLyGcKhxSgP8qUMslboPXKnrfiDdlQUQfagXhLNqAYtEIq-p58yPkRANjA-IacXoWnsiRsom_uE2JublIczRimkEuwzXky-5_Bmqm5ig6nxsfU_AgOY3OH2x3OxZQQ54_knTdTxk9_3wPycHZ6f_K9vbw-vzg5vmxtp1hpnRNghO8t7Zl0gwM_io7DyHumrAKj3IhGiKH3QqBhsvNq5Cj9gOPInaP8gHxd9-5T_LVgLnoXssVpMjPGJWsqGYBkSvCKfnmFPsYlzTWdpkKKDno5QKUOV2prJtRh9rEkY-txuAs2zuhD_T_mgxiACtVV4dsLoTIFn8rWLDnri7vblyxdWZtizgm93qewM-m3pqCfW9Nra7q2pp9b06I6bHVyZectpn9i_1f6AzXpl_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565407680</pqid></control><display><type>article</type><title>Mixture of Trees Probabilistic Graphical Model for Video Segmentation</title><source>SpringerLink Journals</source><creator>Badrinarayanan, Vijay ; Budvytis, Ignas ; Cipolla, Roberto</creator><creatorcontrib>Badrinarayanan, Vijay ; Budvytis, Ignas ; Cipolla, Roberto</creatorcontrib><description>We present a novel mixture of trees probabilistic graphical model for semi-supervised video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. We provide a variational inference scheme for this model to estimate super-pixel labels, their corresponding confidences, as well as the confidences in the temporal linkages. Our algorithm performs inference over full video volume which helps to avoid erroneous label propagation caused by using short time-window processing. In addition, our proposed inference scheme is very efficient both in terms of computational speed and use of RAM and so can be applied in real-time video segmentation scenarios. We bring out the pros and cons of our approach using extensive quantitative comparisons on challenging binary and multi-class video segmentation datasets.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-013-0673-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Active learning ; Algorithms ; Analysis ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Inference ; Labels ; Linkages ; Literature reviews ; Pattern Recognition ; Pattern Recognition and Graphics ; Probabilistic methods ; Probability ; Probability theory ; Segmentation ; Semantics ; Studies ; Temporal logic ; Trees ; Video ; Vision ; Vision systems</subject><ispartof>International journal of computer vision, 2014-10, Vol.110 (1), p.14-29</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-dd50a5f7c1726d8d0fb5430b3729c90a9dbea5587f55ea264f9b3e6f8ebb3dd13</citedby><cites>FETCH-LOGICAL-c492t-dd50a5f7c1726d8d0fb5430b3729c90a9dbea5587f55ea264f9b3e6f8ebb3dd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-013-0673-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-013-0673-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Badrinarayanan, Vijay</creatorcontrib><creatorcontrib>Budvytis, Ignas</creatorcontrib><creatorcontrib>Cipolla, Roberto</creatorcontrib><title>Mixture of Trees Probabilistic Graphical Model for Video Segmentation</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>We present a novel mixture of trees probabilistic graphical model for semi-supervised video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. We provide a variational inference scheme for this model to estimate super-pixel labels, their corresponding confidences, as well as the confidences in the temporal linkages. Our algorithm performs inference over full video volume which helps to avoid erroneous label propagation caused by using short time-window processing. In addition, our proposed inference scheme is very efficient both in terms of computational speed and use of RAM and so can be applied in real-time video segmentation scenarios. We bring out the pros and cons of our approach using extensive quantitative comparisons on challenging binary and multi-class video segmentation datasets.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Inference</subject><subject>Labels</subject><subject>Linkages</subject><subject>Literature reviews</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Studies</subject><subject>Temporal logic</subject><subject>Trees</subject><subject>Video</subject><subject>Vision</subject><subject>Vision systems</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1rHSEUhqW00Nu0P6C7gW7axSRHHZ1xGUKSBhIS8tGtOHq8Ncwdb9WB9N_XMF00gSLiQZ7n8MJLyGcKhxSgP8qUMslboPXKnrfiDdlQUQfagXhLNqAYtEIq-p58yPkRANjA-IacXoWnsiRsom_uE2JublIczRimkEuwzXky-5_Bmqm5ig6nxsfU_AgOY3OH2x3OxZQQ54_knTdTxk9_3wPycHZ6f_K9vbw-vzg5vmxtp1hpnRNghO8t7Zl0gwM_io7DyHumrAKj3IhGiKH3QqBhsvNq5Cj9gOPInaP8gHxd9-5T_LVgLnoXssVpMjPGJWsqGYBkSvCKfnmFPsYlzTWdpkKKDno5QKUOV2prJtRh9rEkY-txuAs2zuhD_T_mgxiACtVV4dsLoTIFn8rWLDnri7vblyxdWZtizgm93qewM-m3pqCfW9Nra7q2pp9b06I6bHVyZectpn9i_1f6AzXpl_g</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Badrinarayanan, Vijay</creator><creator>Budvytis, Ignas</creator><creator>Cipolla, Roberto</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>Mixture of Trees Probabilistic Graphical Model for Video Segmentation</title><author>Badrinarayanan, Vijay ; Budvytis, Ignas ; Cipolla, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-dd50a5f7c1726d8d0fb5430b3729c90a9dbea5587f55ea264f9b3e6f8ebb3dd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Inference</topic><topic>Labels</topic><topic>Linkages</topic><topic>Literature reviews</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Studies</topic><topic>Temporal logic</topic><topic>Trees</topic><topic>Video</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badrinarayanan, Vijay</creatorcontrib><creatorcontrib>Budvytis, Ignas</creatorcontrib><creatorcontrib>Cipolla, Roberto</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badrinarayanan, Vijay</au><au>Budvytis, Ignas</au><au>Cipolla, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixture of Trees Probabilistic Graphical Model for Video Segmentation</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>110</volume><issue>1</issue><spage>14</spage><epage>29</epage><pages>14-29</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>We present a novel mixture of trees probabilistic graphical model for semi-supervised video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. We provide a variational inference scheme for this model to estimate super-pixel labels, their corresponding confidences, as well as the confidences in the temporal linkages. Our algorithm performs inference over full video volume which helps to avoid erroneous label propagation caused by using short time-window processing. In addition, our proposed inference scheme is very efficient both in terms of computational speed and use of RAM and so can be applied in real-time video segmentation scenarios. We bring out the pros and cons of our approach using extensive quantitative comparisons on challenging binary and multi-class video segmentation datasets.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-013-0673-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2014-10, Vol.110 (1), p.14-29 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620062953 |
source | SpringerLink Journals |
subjects | Active learning Algorithms Analysis Artificial Intelligence Computer Imaging Computer Science Image Processing and Computer Vision Inference Labels Linkages Literature reviews Pattern Recognition Pattern Recognition and Graphics Probabilistic methods Probability Probability theory Segmentation Semantics Studies Temporal logic Trees Video Vision Vision systems |
title | Mixture of Trees Probabilistic Graphical Model for Video Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixture%20of%20Trees%20Probabilistic%20Graphical%20Model%20for%20Video%20Segmentation&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Badrinarayanan,%20Vijay&rft.date=2014-10-01&rft.volume=110&rft.issue=1&rft.spage=14&rft.epage=29&rft.pages=14-29&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-013-0673-5&rft_dat=%3Cgale_proqu%3EA385801594%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565407680&rft_id=info:pmid/&rft_galeid=A385801594&rfr_iscdi=true |