Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures
Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture ca...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2014-08, Vol.16 (37), p.8825-8831 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8831 |
---|---|
container_issue | 37 |
container_start_page | 8825 |
container_title | CrystEngComm |
container_volume | 16 |
creator | Zhang, Xiaoxue Qiu, Kaipei Levaenen, Erkki Guo, Zheng Xiao |
description | Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time. |
doi_str_mv | 10.1039/c4ce01258e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620061762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620061762</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16200617623</originalsourceid><addsrcrecordid>eNqVjjtOw0AURUdISARCwwpeaReGGduYQIciCA1yEfroMX52Bs3HzMeCPbFIHJQNUJ3innt1GbsS_Frw6v5G1pK4KG9XdMIWom6aYsWr6oydh_DBuaiF4Av2syVNMqqJwDg_7p12g6IArofXoYVJIVi0TjrbK0uGbARnYUBjEIpHDSG9Z2Xe_rHKAW0HnrokqYPB47hXkcB9qY4g85s2fwBlRu-mOV63xzJIHGPydCBKFb8BI8yvJoyzFsmM5PEghCU77VEHujzygmXPT2_rl2Ke_EwU4s6oIElrtORS2Imm5LwRd01Z_UP9BUusZjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620061762</pqid></control><display><type>article</type><title>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xiaoxue ; Qiu, Kaipei ; Levaenen, Erkki ; Guo, Zheng Xiao</creator><creatorcontrib>Zhang, Xiaoxue ; Qiu, Kaipei ; Levaenen, Erkki ; Guo, Zheng Xiao</creatorcontrib><description>Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c4ce01258e</identifier><language>eng</language><subject>Carbon capture and storage ; Carbon dioxide ; Crystals ; Graphene ; High temperature ; Magnesium oxide ; Morphology ; Oxides</subject><ispartof>CrystEngComm, 2014-08, Vol.16 (37), p.8825-8831</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Qiu, Kaipei</creatorcontrib><creatorcontrib>Levaenen, Erkki</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><title>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</title><title>CrystEngComm</title><description>Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.</description><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Crystals</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Magnesium oxide</subject><subject>Morphology</subject><subject>Oxides</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjjtOw0AURUdISARCwwpeaReGGduYQIciCA1yEfroMX52Bs3HzMeCPbFIHJQNUJ3innt1GbsS_Frw6v5G1pK4KG9XdMIWom6aYsWr6oydh_DBuaiF4Av2syVNMqqJwDg_7p12g6IArofXoYVJIVi0TjrbK0uGbARnYUBjEIpHDSG9Z2Xe_rHKAW0HnrokqYPB47hXkcB9qY4g85s2fwBlRu-mOV63xzJIHGPydCBKFb8BI8yvJoyzFsmM5PEghCU77VEHujzygmXPT2_rl2Ke_EwU4s6oIElrtORS2Imm5LwRd01Z_UP9BUusZjI</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zhang, Xiaoxue</creator><creator>Qiu, Kaipei</creator><creator>Levaenen, Erkki</creator><creator>Guo, Zheng Xiao</creator><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</title><author>Zhang, Xiaoxue ; Qiu, Kaipei ; Levaenen, Erkki ; Guo, Zheng Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16200617623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Crystals</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Magnesium oxide</topic><topic>Morphology</topic><topic>Oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Qiu, Kaipei</creatorcontrib><creatorcontrib>Levaenen, Erkki</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaoxue</au><au>Qiu, Kaipei</au><au>Levaenen, Erkki</au><au>Guo, Zheng Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</atitle><jtitle>CrystEngComm</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>16</volume><issue>37</issue><spage>8825</spage><epage>8831</epage><pages>8825-8831</pages><eissn>1466-8033</eissn><abstract>Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.</abstract><doi>10.1039/c4ce01258e</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2014-08, Vol.16 (37), p.8825-8831 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620061762 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Carbon capture and storage Carbon dioxide Crystals Graphene High temperature Magnesium oxide Morphology Oxides |
title | Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20morphologies%20of%20MgO%20via%20nanoconfinement%20on%20gamma%20-Al%20sub(2)O%20sub(3)%20and%20reduced%20graphite%20oxide%20(rGO):%20improved%20CO%20sub(2)%20capture%20capacity%20at%20elevated%20temperatures&rft.jtitle=CrystEngComm&rft.au=Zhang,%20Xiaoxue&rft.date=2014-08-01&rft.volume=16&rft.issue=37&rft.spage=8825&rft.epage=8831&rft.pages=8825-8831&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c4ce01258e&rft_dat=%3Cproquest%3E1620061762%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620061762&rft_id=info:pmid/&rfr_iscdi=true |