Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures

Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2014-08, Vol.16 (37), p.8825-8831
Hauptverfasser: Zhang, Xiaoxue, Qiu, Kaipei, Levaenen, Erkki, Guo, Zheng Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8831
container_issue 37
container_start_page 8825
container_title CrystEngComm
container_volume 16
creator Zhang, Xiaoxue
Qiu, Kaipei
Levaenen, Erkki
Guo, Zheng Xiao
description Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.
doi_str_mv 10.1039/c4ce01258e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620061762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620061762</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16200617623</originalsourceid><addsrcrecordid>eNqVjjtOw0AURUdISARCwwpeaReGGduYQIciCA1yEfroMX52Bs3HzMeCPbFIHJQNUJ3innt1GbsS_Frw6v5G1pK4KG9XdMIWom6aYsWr6oydh_DBuaiF4Av2syVNMqqJwDg_7p12g6IArofXoYVJIVi0TjrbK0uGbARnYUBjEIpHDSG9Z2Xe_rHKAW0HnrokqYPB47hXkcB9qY4g85s2fwBlRu-mOV63xzJIHGPydCBKFb8BI8yvJoyzFsmM5PEghCU77VEHujzygmXPT2_rl2Ke_EwU4s6oIElrtORS2Imm5LwRd01Z_UP9BUusZjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620061762</pqid></control><display><type>article</type><title>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xiaoxue ; Qiu, Kaipei ; Levaenen, Erkki ; Guo, Zheng Xiao</creator><creatorcontrib>Zhang, Xiaoxue ; Qiu, Kaipei ; Levaenen, Erkki ; Guo, Zheng Xiao</creatorcontrib><description>Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c4ce01258e</identifier><language>eng</language><subject>Carbon capture and storage ; Carbon dioxide ; Crystals ; Graphene ; High temperature ; Magnesium oxide ; Morphology ; Oxides</subject><ispartof>CrystEngComm, 2014-08, Vol.16 (37), p.8825-8831</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Qiu, Kaipei</creatorcontrib><creatorcontrib>Levaenen, Erkki</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><title>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</title><title>CrystEngComm</title><description>Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.</description><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Crystals</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Magnesium oxide</subject><subject>Morphology</subject><subject>Oxides</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjjtOw0AURUdISARCwwpeaReGGduYQIciCA1yEfroMX52Bs3HzMeCPbFIHJQNUJ3innt1GbsS_Frw6v5G1pK4KG9XdMIWom6aYsWr6oydh_DBuaiF4Av2syVNMqqJwDg_7p12g6IArofXoYVJIVi0TjrbK0uGbARnYUBjEIpHDSG9Z2Xe_rHKAW0HnrokqYPB47hXkcB9qY4g85s2fwBlRu-mOV63xzJIHGPydCBKFb8BI8yvJoyzFsmM5PEghCU77VEHujzygmXPT2_rl2Ke_EwU4s6oIElrtORS2Imm5LwRd01Z_UP9BUusZjI</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zhang, Xiaoxue</creator><creator>Qiu, Kaipei</creator><creator>Levaenen, Erkki</creator><creator>Guo, Zheng Xiao</creator><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</title><author>Zhang, Xiaoxue ; Qiu, Kaipei ; Levaenen, Erkki ; Guo, Zheng Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16200617623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Crystals</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Magnesium oxide</topic><topic>Morphology</topic><topic>Oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Qiu, Kaipei</creatorcontrib><creatorcontrib>Levaenen, Erkki</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaoxue</au><au>Qiu, Kaipei</au><au>Levaenen, Erkki</au><au>Guo, Zheng Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures</atitle><jtitle>CrystEngComm</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>16</volume><issue>37</issue><spage>8825</spage><epage>8831</epage><pages>8825-8831</pages><eissn>1466-8033</eissn><abstract>Two substrates, gamma -alumina ( gamma -Al sub(2)O sub(3)) and reduced graphene oxide (rGO), have been used to confine the formation of magnesium oxide (MgO) crystals so as to control the crystal growth, reduce the crystal size, and enlarge the surface area and thus increase the CO sub(2) capture capacity at elevated temperatures. Typically, MgO/ gamma -Al sub(2)O sub(3) was synthesized by a facile sol-gel route, and MgO/rGO was obtained by calcining the hydrothermally grown magnesium hydroxide (Mg(OH) sub(2)) on rGO sheets. Distinct morphologies of MgO were observed through the above two synthesis routes: spherical particles were formed when using gamma -Al sub(2)O sub(3) as the substrate while MgO nanowhiskers appeared when the loading ratio of the precursor was high in rGO-supported samples. The effects of the substrate on the morphology of the confined MgO and the corresponding CO sub(2) uptake are discussed in detail for the first time.</abstract><doi>10.1039/c4ce01258e</doi></addata></record>
fulltext fulltext
identifier EISSN: 1466-8033
ispartof CrystEngComm, 2014-08, Vol.16 (37), p.8825-8831
issn 1466-8033
language eng
recordid cdi_proquest_miscellaneous_1620061762
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carbon capture and storage
Carbon dioxide
Crystals
Graphene
High temperature
Magnesium oxide
Morphology
Oxides
title Selective morphologies of MgO via nanoconfinement on gamma -Al sub(2)O sub(3) and reduced graphite oxide (rGO): improved CO sub(2) capture capacity at elevated temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20morphologies%20of%20MgO%20via%20nanoconfinement%20on%20gamma%20-Al%20sub(2)O%20sub(3)%20and%20reduced%20graphite%20oxide%20(rGO):%20improved%20CO%20sub(2)%20capture%20capacity%20at%20elevated%20temperatures&rft.jtitle=CrystEngComm&rft.au=Zhang,%20Xiaoxue&rft.date=2014-08-01&rft.volume=16&rft.issue=37&rft.spage=8825&rft.epage=8831&rft.pages=8825-8831&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c4ce01258e&rft_dat=%3Cproquest%3E1620061762%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620061762&rft_id=info:pmid/&rfr_iscdi=true