Notes on the integration of numerical relativity waveforms
The primary goal of numerical relativity is to provide estimates of the wave strain, h, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ? sub(4). Assuming Bondi gauge, transforming t...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2011-10, Vol.28 (19), p.195015-np |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | 19 |
container_start_page | 195015 |
container_title | Classical and quantum gravity |
container_volume | 28 |
creator | Reisswig, Christian Pollney, Denis |
description | The primary goal of numerical relativity is to provide estimates of the wave strain, h, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ? sub(4). Assuming Bondi gauge, transforming to the strain h reduces to integration of ? sub(4) twice in time. Integrations performed in either the time or frequency domain, however, lead to secular nonlinear drifts in the resulting strain h. These nonlinear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular nonlinear drifts in the resulting strain. |
doi_str_mv | 10.1088/0264-9381/28/19/195015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620059042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620059042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-74bf2c3de936ba64227d5b78d33b1c13c26810428bca76aaea75bff7e57c42323</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-BelF8FI3k7Rp6k0W_8GiFz2HNE000jY1ya7stzdLFy96EAaGCb_3JvMQOgd8BZjzBSasyGvKYUH4AupUJYbyAM2AMsgZ5eQQzX6gY3QSwgfGABzIDF0_uahD5oYsvuvMDlG_eRltmp3JhnWvvVWyy7zu0uvGxm32JTfaON-HU3RkZBf02b7P0evd7cvyIV893z8ub1a5KoHEvCoaQxRtdU1ZI1lBSNWWTcVbShtQQBVhHHBBeKNkxaTUsiobYypdVqoglNA5upx8R-8-1zpE0dugdNfJQbt1EMAIxmWdLBLKJlR5F4LXRoze9tJvBWCxC0vschC7HAThAmoxhZWEF_sdMqR7jZeDsuFHTQoG6fsscTBx1o3_985_a_5mxdga-g1AgoWh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620059042</pqid></control><display><type>article</type><title>Notes on the integration of numerical relativity waveforms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Reisswig, Christian ; Pollney, Denis</creator><creatorcontrib>Reisswig, Christian ; Pollney, Denis</creatorcontrib><description>The primary goal of numerical relativity is to provide estimates of the wave strain, h, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ? sub(4). Assuming Bondi gauge, transforming to the strain h reduces to integration of ? sub(4) twice in time. Integrations performed in either the time or frequency domain, however, lead to secular nonlinear drifts in the resulting strain h. These nonlinear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular nonlinear drifts in the resulting strain.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/28/19/195015</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computer simulation ; Drift ; Exact sciences and technology ; Frequency domains ; Gages ; Gauges ; General relativity and gravitation ; Nonlinearity ; Physics ; Strain ; Waveforms</subject><ispartof>Classical and quantum gravity, 2011-10, Vol.28 (19), p.195015-np</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-74bf2c3de936ba64227d5b78d33b1c13c26810428bca76aaea75bff7e57c42323</citedby><cites>FETCH-LOGICAL-c512t-74bf2c3de936ba64227d5b78d33b1c13c26810428bca76aaea75bff7e57c42323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/28/19/195015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27911,27912,53817,53897</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24619366$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reisswig, Christian</creatorcontrib><creatorcontrib>Pollney, Denis</creatorcontrib><title>Notes on the integration of numerical relativity waveforms</title><title>Classical and quantum gravity</title><description>The primary goal of numerical relativity is to provide estimates of the wave strain, h, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ? sub(4). Assuming Bondi gauge, transforming to the strain h reduces to integration of ? sub(4) twice in time. Integrations performed in either the time or frequency domain, however, lead to secular nonlinear drifts in the resulting strain h. These nonlinear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular nonlinear drifts in the resulting strain.</description><subject>Computer simulation</subject><subject>Drift</subject><subject>Exact sciences and technology</subject><subject>Frequency domains</subject><subject>Gages</subject><subject>Gauges</subject><subject>General relativity and gravitation</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Strain</subject><subject>Waveforms</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-BelF8FI3k7Rp6k0W_8GiFz2HNE000jY1ya7stzdLFy96EAaGCb_3JvMQOgd8BZjzBSasyGvKYUH4AupUJYbyAM2AMsgZ5eQQzX6gY3QSwgfGABzIDF0_uahD5oYsvuvMDlG_eRltmp3JhnWvvVWyy7zu0uvGxm32JTfaON-HU3RkZBf02b7P0evd7cvyIV893z8ub1a5KoHEvCoaQxRtdU1ZI1lBSNWWTcVbShtQQBVhHHBBeKNkxaTUsiobYypdVqoglNA5upx8R-8-1zpE0dugdNfJQbt1EMAIxmWdLBLKJlR5F4LXRoze9tJvBWCxC0vschC7HAThAmoxhZWEF_sdMqR7jZeDsuFHTQoG6fsscTBx1o3_985_a_5mxdga-g1AgoWh</recordid><startdate>20111007</startdate><enddate>20111007</enddate><creator>Reisswig, Christian</creator><creator>Pollney, Denis</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20111007</creationdate><title>Notes on the integration of numerical relativity waveforms</title><author>Reisswig, Christian ; Pollney, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-74bf2c3de936ba64227d5b78d33b1c13c26810428bca76aaea75bff7e57c42323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Drift</topic><topic>Exact sciences and technology</topic><topic>Frequency domains</topic><topic>Gages</topic><topic>Gauges</topic><topic>General relativity and gravitation</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Strain</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reisswig, Christian</creatorcontrib><creatorcontrib>Pollney, Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reisswig, Christian</au><au>Pollney, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on the integration of numerical relativity waveforms</atitle><jtitle>Classical and quantum gravity</jtitle><date>2011-10-07</date><risdate>2011</risdate><volume>28</volume><issue>19</issue><spage>195015</spage><epage>np</epage><pages>195015-np</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>The primary goal of numerical relativity is to provide estimates of the wave strain, h, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ? sub(4). Assuming Bondi gauge, transforming to the strain h reduces to integration of ? sub(4) twice in time. Integrations performed in either the time or frequency domain, however, lead to secular nonlinear drifts in the resulting strain h. These nonlinear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular nonlinear drifts in the resulting strain.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/28/19/195015</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2011-10, Vol.28 (19), p.195015-np |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620059042 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Computer simulation Drift Exact sciences and technology Frequency domains Gages Gauges General relativity and gravitation Nonlinearity Physics Strain Waveforms |
title | Notes on the integration of numerical relativity waveforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20the%20integration%20of%20numerical%20relativity%20waveforms&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Reisswig,%20Christian&rft.date=2011-10-07&rft.volume=28&rft.issue=19&rft.spage=195015&rft.epage=np&rft.pages=195015-np&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/28/19/195015&rft_dat=%3Cproquest_iop_p%3E1620059042%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620059042&rft_id=info:pmid/&rfr_iscdi=true |