Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography

We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2013-12, Vol.13 (24), p.4765-4774
Hauptverfasser: An, Harry Z, Safai, Eric R, Burak Eral, H, Doyle, Patrick S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4774
container_issue 24
container_start_page 4765
container_title Lab on a chip
container_volume 13
creator An, Harry Z
Safai, Eric R
Burak Eral, H
Doyle, Patrick S
description We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.
doi_str_mv 10.1039/c3lc50610j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620049326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458184244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rp68QdIjyJUJ02apkdZ_ALBg3ouaTbZzZI0NWnR-uvtsut6lDnM8PLwwjwInWO4xkDKG0mszIFhWB-gKaYFSQHz8nB_l8UEncS4BsA5ZfwYTTKKxwE2RdXr0HQrFU1MvE5q451xqjMy8V_DUjWpFCEMplkm0rtWhM6pphPWfKtF4owMfpMZaVVM-rjBtPWfiTXdyi-DaFfDKTrSwkZ1ttsz9H5_9zZ_TJ9fHp7mt8-pJJx1aclBk5KSumYgGa5FiTXHwBRnlBQ81xkpakqE1qRgWpIiz0FALSTHglLNyQxdbnvb4D96FbvKmSiVtaJRvo8VZhkALUnG_kdpzjGnGaUjerVFx09jDEpXbTBOhKHCUG3cV3_uR_hi19vXTi326K9s8gMJ_YCm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458184244</pqid></control><display><type>article</type><title>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>An, Harry Z ; Safai, Eric R ; Burak Eral, H ; Doyle, Patrick S</creator><creatorcontrib>An, Harry Z ; Safai, Eric R ; Burak Eral, H ; Doyle, Patrick S</creatorcontrib><description>We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c3lc50610j</identifier><identifier>PMID: 24141406</identifier><language>eng</language><publisher>England</publisher><subject>Biomimetic Materials - chemical synthesis ; Biomimetic Materials - chemistry ; Chemistry Techniques, Synthetic ; Dimethylpolysiloxanes - chemistry ; Droplets ; Drug Carriers - chemical synthesis ; Drug Carriers - chemistry ; Fluorocarbons - chemistry ; Homogenizing ; Mathematical models ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microparticles ; Microspheres ; Nanostructure ; Oxygen - chemistry ; Prepolymers ; Synthesis</subject><ispartof>Lab on a chip, 2013-12, Vol.13 (24), p.4765-4774</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</citedby><cites>FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24141406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Harry Z</creatorcontrib><creatorcontrib>Safai, Eric R</creatorcontrib><creatorcontrib>Burak Eral, H</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><title>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.</description><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetic Materials - chemistry</subject><subject>Chemistry Techniques, Synthetic</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Droplets</subject><subject>Drug Carriers - chemical synthesis</subject><subject>Drug Carriers - chemistry</subject><subject>Fluorocarbons - chemistry</subject><subject>Homogenizing</subject><subject>Mathematical models</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microparticles</subject><subject>Microspheres</subject><subject>Nanostructure</subject><subject>Oxygen - chemistry</subject><subject>Prepolymers</subject><subject>Synthesis</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo7rp68QdIjyJUJ02apkdZ_ALBg3ouaTbZzZI0NWnR-uvtsut6lDnM8PLwwjwInWO4xkDKG0mszIFhWB-gKaYFSQHz8nB_l8UEncS4BsA5ZfwYTTKKxwE2RdXr0HQrFU1MvE5q451xqjMy8V_DUjWpFCEMplkm0rtWhM6pphPWfKtF4owMfpMZaVVM-rjBtPWfiTXdyi-DaFfDKTrSwkZ1ttsz9H5_9zZ_TJ9fHp7mt8-pJJx1aclBk5KSumYgGa5FiTXHwBRnlBQ81xkpakqE1qRgWpIiz0FALSTHglLNyQxdbnvb4D96FbvKmSiVtaJRvo8VZhkALUnG_kdpzjGnGaUjerVFx09jDEpXbTBOhKHCUG3cV3_uR_hi19vXTi326K9s8gMJ_YCm</recordid><startdate>20131221</startdate><enddate>20131221</enddate><creator>An, Harry Z</creator><creator>Safai, Eric R</creator><creator>Burak Eral, H</creator><creator>Doyle, Patrick S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20131221</creationdate><title>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</title><author>An, Harry Z ; Safai, Eric R ; Burak Eral, H ; Doyle, Patrick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetic Materials - chemistry</topic><topic>Chemistry Techniques, Synthetic</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Droplets</topic><topic>Drug Carriers - chemical synthesis</topic><topic>Drug Carriers - chemistry</topic><topic>Fluorocarbons - chemistry</topic><topic>Homogenizing</topic><topic>Mathematical models</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microparticles</topic><topic>Microspheres</topic><topic>Nanostructure</topic><topic>Oxygen - chemistry</topic><topic>Prepolymers</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Harry Z</creatorcontrib><creatorcontrib>Safai, Eric R</creatorcontrib><creatorcontrib>Burak Eral, H</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Harry Z</au><au>Safai, Eric R</au><au>Burak Eral, H</au><au>Doyle, Patrick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2013-12-21</date><risdate>2013</risdate><volume>13</volume><issue>24</issue><spage>4765</spage><epage>4774</epage><pages>4765-4774</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.</abstract><cop>England</cop><pmid>24141406</pmid><doi>10.1039/c3lc50610j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2013-12, Vol.13 (24), p.4765-4774
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_1620049326
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biomimetic Materials - chemical synthesis
Biomimetic Materials - chemistry
Chemistry Techniques, Synthetic
Dimethylpolysiloxanes - chemistry
Droplets
Drug Carriers - chemical synthesis
Drug Carriers - chemistry
Fluorocarbons - chemistry
Homogenizing
Mathematical models
Microfluidic Analytical Techniques - methods
Microfluidics
Microparticles
Microspheres
Nanostructure
Oxygen - chemistry
Prepolymers
Synthesis
title Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20biomimetic%20oxygen-carrying%20compartmentalized%20microparticles%20using%20flow%20lithography&rft.jtitle=Lab%20on%20a%20chip&rft.au=An,%20Harry%20Z&rft.date=2013-12-21&rft.volume=13&rft.issue=24&rft.spage=4765&rft.epage=4774&rft.pages=4765-4774&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c3lc50610j&rft_dat=%3Cproquest_cross%3E1458184244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458184244&rft_id=info:pmid/24141406&rfr_iscdi=true