Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography
We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2013-12, Vol.13 (24), p.4765-4774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4774 |
---|---|
container_issue | 24 |
container_start_page | 4765 |
container_title | Lab on a chip |
container_volume | 13 |
creator | An, Harry Z Safai, Eric R Burak Eral, H Doyle, Patrick S |
description | We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics. |
doi_str_mv | 10.1039/c3lc50610j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620049326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458184244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rp68QdIjyJUJ02apkdZ_ALBg3ouaTbZzZI0NWnR-uvtsut6lDnM8PLwwjwInWO4xkDKG0mszIFhWB-gKaYFSQHz8nB_l8UEncS4BsA5ZfwYTTKKxwE2RdXr0HQrFU1MvE5q451xqjMy8V_DUjWpFCEMplkm0rtWhM6pphPWfKtF4owMfpMZaVVM-rjBtPWfiTXdyi-DaFfDKTrSwkZ1ttsz9H5_9zZ_TJ9fHp7mt8-pJJx1aclBk5KSumYgGa5FiTXHwBRnlBQ81xkpakqE1qRgWpIiz0FALSTHglLNyQxdbnvb4D96FbvKmSiVtaJRvo8VZhkALUnG_kdpzjGnGaUjerVFx09jDEpXbTBOhKHCUG3cV3_uR_hi19vXTi326K9s8gMJ_YCm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458184244</pqid></control><display><type>article</type><title>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>An, Harry Z ; Safai, Eric R ; Burak Eral, H ; Doyle, Patrick S</creator><creatorcontrib>An, Harry Z ; Safai, Eric R ; Burak Eral, H ; Doyle, Patrick S</creatorcontrib><description>We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c3lc50610j</identifier><identifier>PMID: 24141406</identifier><language>eng</language><publisher>England</publisher><subject>Biomimetic Materials - chemical synthesis ; Biomimetic Materials - chemistry ; Chemistry Techniques, Synthetic ; Dimethylpolysiloxanes - chemistry ; Droplets ; Drug Carriers - chemical synthesis ; Drug Carriers - chemistry ; Fluorocarbons - chemistry ; Homogenizing ; Mathematical models ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microparticles ; Microspheres ; Nanostructure ; Oxygen - chemistry ; Prepolymers ; Synthesis</subject><ispartof>Lab on a chip, 2013-12, Vol.13 (24), p.4765-4774</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</citedby><cites>FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24141406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Harry Z</creatorcontrib><creatorcontrib>Safai, Eric R</creatorcontrib><creatorcontrib>Burak Eral, H</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><title>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.</description><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetic Materials - chemistry</subject><subject>Chemistry Techniques, Synthetic</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Droplets</subject><subject>Drug Carriers - chemical synthesis</subject><subject>Drug Carriers - chemistry</subject><subject>Fluorocarbons - chemistry</subject><subject>Homogenizing</subject><subject>Mathematical models</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microparticles</subject><subject>Microspheres</subject><subject>Nanostructure</subject><subject>Oxygen - chemistry</subject><subject>Prepolymers</subject><subject>Synthesis</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo7rp68QdIjyJUJ02apkdZ_ALBg3ouaTbZzZI0NWnR-uvtsut6lDnM8PLwwjwInWO4xkDKG0mszIFhWB-gKaYFSQHz8nB_l8UEncS4BsA5ZfwYTTKKxwE2RdXr0HQrFU1MvE5q451xqjMy8V_DUjWpFCEMplkm0rtWhM6pphPWfKtF4owMfpMZaVVM-rjBtPWfiTXdyi-DaFfDKTrSwkZ1ttsz9H5_9zZ_TJ9fHp7mt8-pJJx1aclBk5KSumYgGa5FiTXHwBRnlBQ81xkpakqE1qRgWpIiz0FALSTHglLNyQxdbnvb4D96FbvKmSiVtaJRvo8VZhkALUnG_kdpzjGnGaUjerVFx09jDEpXbTBOhKHCUG3cV3_uR_hi19vXTi326K9s8gMJ_YCm</recordid><startdate>20131221</startdate><enddate>20131221</enddate><creator>An, Harry Z</creator><creator>Safai, Eric R</creator><creator>Burak Eral, H</creator><creator>Doyle, Patrick S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20131221</creationdate><title>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</title><author>An, Harry Z ; Safai, Eric R ; Burak Eral, H ; Doyle, Patrick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-980f3943bb60c61ba91f8106e8643785f237b43aff376fc37550a0bac81a44f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetic Materials - chemistry</topic><topic>Chemistry Techniques, Synthetic</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Droplets</topic><topic>Drug Carriers - chemical synthesis</topic><topic>Drug Carriers - chemistry</topic><topic>Fluorocarbons - chemistry</topic><topic>Homogenizing</topic><topic>Mathematical models</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microparticles</topic><topic>Microspheres</topic><topic>Nanostructure</topic><topic>Oxygen - chemistry</topic><topic>Prepolymers</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Harry Z</creatorcontrib><creatorcontrib>Safai, Eric R</creatorcontrib><creatorcontrib>Burak Eral, H</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Harry Z</au><au>Safai, Eric R</au><au>Burak Eral, H</au><au>Doyle, Patrick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2013-12-21</date><risdate>2013</risdate><volume>13</volume><issue>24</issue><spage>4765</spage><epage>4774</epage><pages>4765-4774</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically stabilized by the trapped species method. The presence of PFC droplets increases the solubility and diffusivity of oxygen in the prepolymer solution, thereby enhancing the rate of O2 inhibition during microparticle synthesis. We develop a simple model that successfully predicts the augmented O2 mass transport, which agrees well with experimental data. Informed by our analytical results, cell-sized composite microgels are generated by controlling the oxygen environment around the polydimethylsiloxane (PDMS) microfluidic synthesis device. These nanoemulsion composites are functionally similar to red blood cells as oxygen carriers. Such bio-inspired polymeric particles with controlled physical properties are promising vehicles for drug delivery and clinical diagnostics.</abstract><cop>England</cop><pmid>24141406</pmid><doi>10.1039/c3lc50610j</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2013-12, Vol.13 (24), p.4765-4774 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620049326 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biomimetic Materials - chemical synthesis Biomimetic Materials - chemistry Chemistry Techniques, Synthetic Dimethylpolysiloxanes - chemistry Droplets Drug Carriers - chemical synthesis Drug Carriers - chemistry Fluorocarbons - chemistry Homogenizing Mathematical models Microfluidic Analytical Techniques - methods Microfluidics Microparticles Microspheres Nanostructure Oxygen - chemistry Prepolymers Synthesis |
title | Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20biomimetic%20oxygen-carrying%20compartmentalized%20microparticles%20using%20flow%20lithography&rft.jtitle=Lab%20on%20a%20chip&rft.au=An,%20Harry%20Z&rft.date=2013-12-21&rft.volume=13&rft.issue=24&rft.spage=4765&rft.epage=4774&rft.pages=4765-4774&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c3lc50610j&rft_dat=%3Cproquest_cross%3E1458184244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458184244&rft_id=info:pmid/24141406&rfr_iscdi=true |