Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7

We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7. Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metalli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2012-04, Vol.24 (13), p.1-12
Hauptverfasser: Thiyagarajan, R, Manivannan, N, Arumugam, S, Esakki Muthu, S, Tamilselvan, N R, Sekar, C, Yoshino, H, Murata, K, Apostu, M O, Suryanarayanan, R, Revcolevschi, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 13
container_start_page 1
container_title Journal of physics. Condensed matter
container_volume 24
creator Thiyagarajan, R
Manivannan, N
Arumugam, S
Esakki Muthu, S
Tamilselvan, N R
Sekar, C
Yoshino, H
Murata, K
Apostu, M O
Suryanarayanan, R
Revcolevschi, A
description We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7. Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ∼1.0 GPa at T < 70 K. A huge negative piezoresistance ∼106 in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P > 7.0 GPa. A modification in the orbital occupation of the eg electron between 3dx2−y2 and 3dz2−r2 states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data.
doi_str_mv 10.1088/0953-8984/24/13/136002
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620041580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620041580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1060-b19accf4fe2c41b7a28343e6d2a8acc4cfe4bcf9e963b9baffe00f910d9471dc3</originalsourceid><addsrcrecordid>eNo9kd9KHDEUxkOx4Gr7CpIbQS9mNv9mNnMpYm1hRaEt9C6cyZzUyGwyJjMX9hX60mZdEQInOd-PQ77vEHLGWc2Z1mvWNbLSnVZrodZcltMyJj6RVbnwqlX6zxFZfUDH5CTnJ8aY0lKtyP-HhDkvCSsfhsXiQG0cY84w0snjv1hUn2cIFik6h3amEAY6P-KeG2HKSKN7e09xhBSDt7TwM1If3tq9H-EFE91B-AvBF-FiC6xWD4nV7SWvxc_Ea30XxP3mC_nsYMz49b2ekt_fbn5df6-297c_rq-2leesZVXPO7DWKYfCKt5vQBQnEttBgC6Csg5Vb12HXSv7rofybcZcx9nQqQ0frDwlF4e5U4rPC-bZ7Hy2WOwEjEs2vBUlHt5oVtDzdxSyhdGlkoTPZkp-B-nFiGbTKN3IwokD5-NknuKSQjFgODP7DZl9-GYfvhHKcGkOG5KvhWOEfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620041580</pqid></control><display><type>article</type><title>Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Thiyagarajan, R ; Manivannan, N ; Arumugam, S ; Esakki Muthu, S ; Tamilselvan, N R ; Sekar, C ; Yoshino, H ; Murata, K ; Apostu, M O ; Suryanarayanan, R ; Revcolevschi, A</creator><creatorcontrib>Thiyagarajan, R ; Manivannan, N ; Arumugam, S ; Esakki Muthu, S ; Tamilselvan, N R ; Sekar, C ; Yoshino, H ; Murata, K ; Apostu, M O ; Suryanarayanan, R ; Revcolevschi, A</creatorcontrib><description>We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7. Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ∼1.0 GPa at T &lt; 70 K. A huge negative piezoresistance ∼106 in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P &gt; 7.0 GPa. A modification in the orbital occupation of the eg electron between 3dx2−y2 and 3dz2−r2 states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/24/13/136002</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electrical resistivity ; Exact sciences and technology ; Ferromagnetism ; Insulators ; Magnetic properties and materials ; Magnetotransport phenomena, materials for magnetotransport ; Manganites ; Occupation ; Physics ; Piezoresistance ; Transition temperature</subject><ispartof>Journal of physics. Condensed matter, 2012-04, Vol.24 (13), p.1-12</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/24/13/136002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25754853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiyagarajan, R</creatorcontrib><creatorcontrib>Manivannan, N</creatorcontrib><creatorcontrib>Arumugam, S</creatorcontrib><creatorcontrib>Esakki Muthu, S</creatorcontrib><creatorcontrib>Tamilselvan, N R</creatorcontrib><creatorcontrib>Sekar, C</creatorcontrib><creatorcontrib>Yoshino, H</creatorcontrib><creatorcontrib>Murata, K</creatorcontrib><creatorcontrib>Apostu, M O</creatorcontrib><creatorcontrib>Suryanarayanan, R</creatorcontrib><creatorcontrib>Revcolevschi, A</creatorcontrib><title>Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7. Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ∼1.0 GPa at T &lt; 70 K. A huge negative piezoresistance ∼106 in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P &gt; 7.0 GPa. A modification in the orbital occupation of the eg electron between 3dx2−y2 and 3dz2−r2 states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data.</description><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electrical resistivity</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Insulators</subject><subject>Magnetic properties and materials</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Manganites</subject><subject>Occupation</subject><subject>Physics</subject><subject>Piezoresistance</subject><subject>Transition temperature</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kd9KHDEUxkOx4Gr7CpIbQS9mNv9mNnMpYm1hRaEt9C6cyZzUyGwyJjMX9hX60mZdEQInOd-PQ77vEHLGWc2Z1mvWNbLSnVZrodZcltMyJj6RVbnwqlX6zxFZfUDH5CTnJ8aY0lKtyP-HhDkvCSsfhsXiQG0cY84w0snjv1hUn2cIFik6h3amEAY6P-KeG2HKSKN7e09xhBSDt7TwM1If3tq9H-EFE91B-AvBF-FiC6xWD4nV7SWvxc_Ea30XxP3mC_nsYMz49b2ekt_fbn5df6-297c_rq-2leesZVXPO7DWKYfCKt5vQBQnEttBgC6Csg5Vb12HXSv7rofybcZcx9nQqQ0frDwlF4e5U4rPC-bZ7Hy2WOwEjEs2vBUlHt5oVtDzdxSyhdGlkoTPZkp-B-nFiGbTKN3IwokD5-NknuKSQjFgODP7DZl9-GYfvhHKcGkOG5KvhWOEfg</recordid><startdate>20120404</startdate><enddate>20120404</enddate><creator>Thiyagarajan, R</creator><creator>Manivannan, N</creator><creator>Arumugam, S</creator><creator>Esakki Muthu, S</creator><creator>Tamilselvan, N R</creator><creator>Sekar, C</creator><creator>Yoshino, H</creator><creator>Murata, K</creator><creator>Apostu, M O</creator><creator>Suryanarayanan, R</creator><creator>Revcolevschi, A</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120404</creationdate><title>Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7</title><author>Thiyagarajan, R ; Manivannan, N ; Arumugam, S ; Esakki Muthu, S ; Tamilselvan, N R ; Sekar, C ; Yoshino, H ; Murata, K ; Apostu, M O ; Suryanarayanan, R ; Revcolevschi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1060-b19accf4fe2c41b7a28343e6d2a8acc4cfe4bcf9e963b9baffe00f910d9471dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electrical resistivity</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Insulators</topic><topic>Magnetic properties and materials</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Manganites</topic><topic>Occupation</topic><topic>Physics</topic><topic>Piezoresistance</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiyagarajan, R</creatorcontrib><creatorcontrib>Manivannan, N</creatorcontrib><creatorcontrib>Arumugam, S</creatorcontrib><creatorcontrib>Esakki Muthu, S</creatorcontrib><creatorcontrib>Tamilselvan, N R</creatorcontrib><creatorcontrib>Sekar, C</creatorcontrib><creatorcontrib>Yoshino, H</creatorcontrib><creatorcontrib>Murata, K</creatorcontrib><creatorcontrib>Apostu, M O</creatorcontrib><creatorcontrib>Suryanarayanan, R</creatorcontrib><creatorcontrib>Revcolevschi, A</creatorcontrib><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiyagarajan, R</au><au>Manivannan, N</au><au>Arumugam, S</au><au>Esakki Muthu, S</au><au>Tamilselvan, N R</au><au>Sekar, C</au><au>Yoshino, H</au><au>Murata, K</au><au>Apostu, M O</au><au>Suryanarayanan, R</au><au>Revcolevschi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2012-04-04</date><risdate>2012</risdate><volume>24</volume><issue>13</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7. Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ∼1.0 GPa at T &lt; 70 K. A huge negative piezoresistance ∼106 in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P &gt; 7.0 GPa. A modification in the orbital occupation of the eg electron between 3dx2−y2 and 3dz2−r2 states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-8984/24/13/136002</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2012-04, Vol.24 (13), p.1-12
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_1620041580
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electrical resistivity
Exact sciences and technology
Ferromagnetism
Insulators
Magnetic properties and materials
Magnetotransport phenomena, materials for magnetotransport
Manganites
Occupation
Physics
Piezoresistance
Transition temperature
title Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure-induced%20colossal%20piezoresistance%20effect%20and%20the%20collapse%20of%20the%20polaronic%20state%20in%20the%20bilayer%20manganite%20(La0.4Pr0.6)1.2Sr1.8Mn2O7&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Thiyagarajan,%20R&rft.date=2012-04-04&rft.volume=24&rft.issue=13&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/24/13/136002&rft_dat=%3Cproquest_iop_j%3E1620041580%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620041580&rft_id=info:pmid/&rfr_iscdi=true