Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation

This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2015-01, Vol.53 (1), p.70-84
Hauptverfasser: Xue, Zhaohui, Li, Jun, Cheng, Liang, Du, Peijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 70
container_title IEEE transactions on geoscience and remote sensing
container_volume 53
creator Xue, Zhaohui
Li, Jun
Cheng, Liang
Du, Peijun
description This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.
doi_str_mv 10.1109/TGRS.2014.2318332
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620041221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6811218</ieee_id><sourcerecordid>1620041221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</originalsourceid><addsrcrecordid>eNqF0UFLwzAYBuAgCs7pDxAvAS9eOvOlSdMc59RNmAhunkvWfZ0dXdMlnbB_b-qGBy-eQuB5X_h4CbkGNgBg-n4-fp8NOAMx4DGkccxPSA-kTCOWCHFKegx0EvFU83Ny4f2aBSlB9ch21mDeOlNFs8a0panoqDLel0WZh6-tqS3oZN-g80dHH01r6Fdp6Kt1zaet7CrQELObxtZYt3RYm2rvSx89GI9L-rIxK6QzbIz7abwkZ4WpPF4d3z75eH6ajybR9G38MhpOo1xw3UYYK4aqSKVGjSpBlS8BBU-4XkiZFIVKFxArvuxuAo3IRYHCpBgvU9SGQdwnd4fextntDn2bbUqfY1WZGu3OZ6CEUMC5Zv_ThDMmgu1ab__Qtd25cHFQUkoWqJRBwUHlznrvsMgaV26M22fAsm6vrNsr6_bKjnuFzM0hUyLir09SAB7AN-XIkXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555016255</pqid></control><display><type>article</type><title>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Zhaohui ; Li, Jun ; Cheng, Liang ; Du, Peijun</creator><creatorcontrib>Xue, Zhaohui ; Li, Jun ; Cheng, Liang ; Du, Peijun</creatorcontrib><description>This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2014.2318332</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Dictionaries ; Hyperspectral imaging ; image separation ; morphological component analysis (MCA) ; Separation ; Space exploration ; sparse representation ; Spectra ; spectral-spatial classification ; support vector machine (SVM) ; Support vector machines ; Surface layer ; Texture ; Wavelet transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-01, Vol.53 (1), p.70-84</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</citedby><cites>FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6811218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6811218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Zhaohui</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Du, Peijun</creatorcontrib><title>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.</description><subject>Classification</subject><subject>Dictionaries</subject><subject>Hyperspectral imaging</subject><subject>image separation</subject><subject>morphological component analysis (MCA)</subject><subject>Separation</subject><subject>Space exploration</subject><subject>sparse representation</subject><subject>Spectra</subject><subject>spectral-spatial classification</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Wavelet transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UFLwzAYBuAgCs7pDxAvAS9eOvOlSdMc59RNmAhunkvWfZ0dXdMlnbB_b-qGBy-eQuB5X_h4CbkGNgBg-n4-fp8NOAMx4DGkccxPSA-kTCOWCHFKegx0EvFU83Ny4f2aBSlB9ch21mDeOlNFs8a0panoqDLel0WZh6-tqS3oZN-g80dHH01r6Fdp6Kt1zaet7CrQELObxtZYt3RYm2rvSx89GI9L-rIxK6QzbIz7abwkZ4WpPF4d3z75eH6ajybR9G38MhpOo1xw3UYYK4aqSKVGjSpBlS8BBU-4XkiZFIVKFxArvuxuAo3IRYHCpBgvU9SGQdwnd4fextntDn2bbUqfY1WZGu3OZ6CEUMC5Zv_ThDMmgu1ab__Qtd25cHFQUkoWqJRBwUHlznrvsMgaV26M22fAsm6vrNsr6_bKjnuFzM0hUyLir09SAB7AN-XIkXc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Xue, Zhaohui</creator><creator>Li, Jun</creator><creator>Cheng, Liang</creator><creator>Du, Peijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20150101</creationdate><title>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</title><author>Xue, Zhaohui ; Li, Jun ; Cheng, Liang ; Du, Peijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Dictionaries</topic><topic>Hyperspectral imaging</topic><topic>image separation</topic><topic>morphological component analysis (MCA)</topic><topic>Separation</topic><topic>Space exploration</topic><topic>sparse representation</topic><topic>Spectra</topic><topic>spectral-spatial classification</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhaohui</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Du, Peijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Zhaohui</au><au>Li, Jun</au><au>Cheng, Liang</au><au>Du, Peijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>1</issue><spage>70</spage><epage>84</epage><pages>70-84</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2014.2318332</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2015-01, Vol.53 (1), p.70-84
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_1620041221
source IEEE Electronic Library (IEL)
subjects Classification
Dictionaries
Hyperspectral imaging
image separation
morphological component analysis (MCA)
Separation
Space exploration
sparse representation
Spectra
spectral-spatial classification
support vector machine (SVM)
Support vector machines
Surface layer
Texture
Wavelet transforms
title Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-Spatial%20Classification%20of%20Hyperspectral%20Data%20via%20Morphological%20Component%20Analysis-Based%20Image%20Separation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xue,%20Zhaohui&rft.date=2015-01-01&rft.volume=53&rft.issue=1&rft.spage=70&rft.epage=84&rft.pages=70-84&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2014.2318332&rft_dat=%3Cproquest_RIE%3E1620041221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555016255&rft_id=info:pmid/&rft_ieee_id=6811218&rfr_iscdi=true