Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation
This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2015-01, Vol.53 (1), p.70-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 53 |
creator | Xue, Zhaohui Li, Jun Cheng, Liang Du, Peijun |
description | This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods. |
doi_str_mv | 10.1109/TGRS.2014.2318332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620041221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6811218</ieee_id><sourcerecordid>1620041221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</originalsourceid><addsrcrecordid>eNqF0UFLwzAYBuAgCs7pDxAvAS9eOvOlSdMc59RNmAhunkvWfZ0dXdMlnbB_b-qGBy-eQuB5X_h4CbkGNgBg-n4-fp8NOAMx4DGkccxPSA-kTCOWCHFKegx0EvFU83Ny4f2aBSlB9ch21mDeOlNFs8a0panoqDLel0WZh6-tqS3oZN-g80dHH01r6Fdp6Kt1zaet7CrQELObxtZYt3RYm2rvSx89GI9L-rIxK6QzbIz7abwkZ4WpPF4d3z75eH6ajybR9G38MhpOo1xw3UYYK4aqSKVGjSpBlS8BBU-4XkiZFIVKFxArvuxuAo3IRYHCpBgvU9SGQdwnd4fextntDn2bbUqfY1WZGu3OZ6CEUMC5Zv_ThDMmgu1ab__Qtd25cHFQUkoWqJRBwUHlznrvsMgaV26M22fAsm6vrNsr6_bKjnuFzM0hUyLir09SAB7AN-XIkXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555016255</pqid></control><display><type>article</type><title>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Zhaohui ; Li, Jun ; Cheng, Liang ; Du, Peijun</creator><creatorcontrib>Xue, Zhaohui ; Li, Jun ; Cheng, Liang ; Du, Peijun</creatorcontrib><description>This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2014.2318332</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Dictionaries ; Hyperspectral imaging ; image separation ; morphological component analysis (MCA) ; Separation ; Space exploration ; sparse representation ; Spectra ; spectral-spatial classification ; support vector machine (SVM) ; Support vector machines ; Surface layer ; Texture ; Wavelet transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-01, Vol.53 (1), p.70-84</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</citedby><cites>FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6811218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6811218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Zhaohui</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Du, Peijun</creatorcontrib><title>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.</description><subject>Classification</subject><subject>Dictionaries</subject><subject>Hyperspectral imaging</subject><subject>image separation</subject><subject>morphological component analysis (MCA)</subject><subject>Separation</subject><subject>Space exploration</subject><subject>sparse representation</subject><subject>Spectra</subject><subject>spectral-spatial classification</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Wavelet transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UFLwzAYBuAgCs7pDxAvAS9eOvOlSdMc59RNmAhunkvWfZ0dXdMlnbB_b-qGBy-eQuB5X_h4CbkGNgBg-n4-fp8NOAMx4DGkccxPSA-kTCOWCHFKegx0EvFU83Ny4f2aBSlB9ch21mDeOlNFs8a0panoqDLel0WZh6-tqS3oZN-g80dHH01r6Fdp6Kt1zaet7CrQELObxtZYt3RYm2rvSx89GI9L-rIxK6QzbIz7abwkZ4WpPF4d3z75eH6ajybR9G38MhpOo1xw3UYYK4aqSKVGjSpBlS8BBU-4XkiZFIVKFxArvuxuAo3IRYHCpBgvU9SGQdwnd4fextntDn2bbUqfY1WZGu3OZ6CEUMC5Zv_ThDMmgu1ab__Qtd25cHFQUkoWqJRBwUHlznrvsMgaV26M22fAsm6vrNsr6_bKjnuFzM0hUyLir09SAB7AN-XIkXc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Xue, Zhaohui</creator><creator>Li, Jun</creator><creator>Cheng, Liang</creator><creator>Du, Peijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20150101</creationdate><title>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</title><author>Xue, Zhaohui ; Li, Jun ; Cheng, Liang ; Du, Peijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-e370e7f859e9e76e7cd1e42629b556ff78b1372d289219ee24fe4a8e3d8e9a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Dictionaries</topic><topic>Hyperspectral imaging</topic><topic>image separation</topic><topic>morphological component analysis (MCA)</topic><topic>Separation</topic><topic>Space exploration</topic><topic>sparse representation</topic><topic>Spectra</topic><topic>spectral-spatial classification</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhaohui</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Du, Peijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Zhaohui</au><au>Li, Jun</au><au>Cheng, Liang</au><au>Du, Peijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>1</issue><spage>70</spage><epage>84</epage><pages>70-84</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2014.2318332</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2015-01, Vol.53 (1), p.70-84 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620041221 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Dictionaries Hyperspectral imaging image separation morphological component analysis (MCA) Separation Space exploration sparse representation Spectra spectral-spatial classification support vector machine (SVM) Support vector machines Surface layer Texture Wavelet transforms |
title | Spectral-Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-Spatial%20Classification%20of%20Hyperspectral%20Data%20via%20Morphological%20Component%20Analysis-Based%20Image%20Separation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xue,%20Zhaohui&rft.date=2015-01-01&rft.volume=53&rft.issue=1&rft.spage=70&rft.epage=84&rft.pages=70-84&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2014.2318332&rft_dat=%3Cproquest_RIE%3E1620041221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555016255&rft_id=info:pmid/&rft_ieee_id=6811218&rfr_iscdi=true |