Zigzag graphene nanoribbons with curved edges

Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2013-01, Vol.3 (25), p.10014-10018
Hauptverfasser: Le, Nam B., Woods, Lilia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10018
container_issue 25
container_start_page 10014
container_title RSC advances
container_volume 3
creator Le, Nam B.
Woods, Lilia M.
description Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.
doi_str_mv 10.1039/c3ra41870g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620040473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620040473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</originalsourceid><addsrcrecordid>eNpNkD9LxEAUxBdR8Div8ROkFCH69m-SUg71hAMbbWyWt5uXXCSXxN1E0U9v5ASdZqb4zRTD2DmHKw6yuPYyoOJ5BvURWwhQJhVgiuN_-ZStYnyFWUZzYfiCpS9N_YV1UgccdtRR0mHXh8a5vovJRzPuEj-FdyoTKmuKZ-ykwjbS6teX7Pnu9mm9SbeP9w_rm23qhVFj6jMiclBI6QskrCSXupSeNGYV5EAlKucy5_NcCsxKLHSuOa-4cdrNVS2X7OKwO4T-baI42n0TPbUtdtRP0XIjABSoTM7o5QH1oY8xUGWH0OwxfFoO9ucW-3eL_AZRI1VO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620040473</pqid></control><display><type>article</type><title>Zigzag graphene nanoribbons with curved edges</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Le, Nam B. ; Woods, Lilia M.</creator><creatorcontrib>Le, Nam B. ; Woods, Lilia M.</creatorcontrib><description>Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c3ra41870g</identifier><language>eng</language><subject>Asymmetry ; Band structure of solids ; Electronic structure ; Energy bands ; Folding ; Graphene ; Nanostructure ; Phases</subject><ispartof>RSC advances, 2013-01, Vol.3 (25), p.10014-10018</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</citedby><cites>FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Le, Nam B.</creatorcontrib><creatorcontrib>Woods, Lilia M.</creatorcontrib><title>Zigzag graphene nanoribbons with curved edges</title><title>RSC advances</title><description>Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.</description><subject>Asymmetry</subject><subject>Band structure of solids</subject><subject>Electronic structure</subject><subject>Energy bands</subject><subject>Folding</subject><subject>Graphene</subject><subject>Nanostructure</subject><subject>Phases</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkD9LxEAUxBdR8Div8ROkFCH69m-SUg71hAMbbWyWt5uXXCSXxN1E0U9v5ASdZqb4zRTD2DmHKw6yuPYyoOJ5BvURWwhQJhVgiuN_-ZStYnyFWUZzYfiCpS9N_YV1UgccdtRR0mHXh8a5vovJRzPuEj-FdyoTKmuKZ-ykwjbS6teX7Pnu9mm9SbeP9w_rm23qhVFj6jMiclBI6QskrCSXupSeNGYV5EAlKucy5_NcCsxKLHSuOa-4cdrNVS2X7OKwO4T-baI42n0TPbUtdtRP0XIjABSoTM7o5QH1oY8xUGWH0OwxfFoO9ucW-3eL_AZRI1VO</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Le, Nam B.</creator><creator>Woods, Lilia M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Zigzag graphene nanoribbons with curved edges</title><author>Le, Nam B. ; Woods, Lilia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymmetry</topic><topic>Band structure of solids</topic><topic>Electronic structure</topic><topic>Energy bands</topic><topic>Folding</topic><topic>Graphene</topic><topic>Nanostructure</topic><topic>Phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Nam B.</creatorcontrib><creatorcontrib>Woods, Lilia M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Nam B.</au><au>Woods, Lilia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zigzag graphene nanoribbons with curved edges</atitle><jtitle>RSC advances</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>3</volume><issue>25</issue><spage>10014</spage><epage>10018</epage><pages>10014-10018</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.</abstract><doi>10.1039/c3ra41870g</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2013-01, Vol.3 (25), p.10014-10018
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_1620040473
source Royal Society Of Chemistry Journals 2008-
subjects Asymmetry
Band structure of solids
Electronic structure
Energy bands
Folding
Graphene
Nanostructure
Phases
title Zigzag graphene nanoribbons with curved edges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zigzag%20graphene%20nanoribbons%20with%20curved%20edges&rft.jtitle=RSC%20advances&rft.au=Le,%20Nam%20B.&rft.date=2013-01-01&rft.volume=3&rft.issue=25&rft.spage=10014&rft.epage=10018&rft.pages=10014-10018&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c3ra41870g&rft_dat=%3Cproquest_cross%3E1620040473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620040473&rft_id=info:pmid/&rfr_iscdi=true