Zigzag graphene nanoribbons with curved edges
Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwi...
Gespeichert in:
Veröffentlicht in: | RSC advances 2013-01, Vol.3 (25), p.10014-10018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10018 |
---|---|
container_issue | 25 |
container_start_page | 10014 |
container_title | RSC advances |
container_volume | 3 |
creator | Le, Nam B. Woods, Lilia M. |
description | Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects. |
doi_str_mv | 10.1039/c3ra41870g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1620040473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1620040473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</originalsourceid><addsrcrecordid>eNpNkD9LxEAUxBdR8Div8ROkFCH69m-SUg71hAMbbWyWt5uXXCSXxN1E0U9v5ASdZqb4zRTD2DmHKw6yuPYyoOJ5BvURWwhQJhVgiuN_-ZStYnyFWUZzYfiCpS9N_YV1UgccdtRR0mHXh8a5vovJRzPuEj-FdyoTKmuKZ-ykwjbS6teX7Pnu9mm9SbeP9w_rm23qhVFj6jMiclBI6QskrCSXupSeNGYV5EAlKucy5_NcCsxKLHSuOa-4cdrNVS2X7OKwO4T-baI42n0TPbUtdtRP0XIjABSoTM7o5QH1oY8xUGWH0OwxfFoO9ucW-3eL_AZRI1VO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620040473</pqid></control><display><type>article</type><title>Zigzag graphene nanoribbons with curved edges</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Le, Nam B. ; Woods, Lilia M.</creator><creatorcontrib>Le, Nam B. ; Woods, Lilia M.</creatorcontrib><description>Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c3ra41870g</identifier><language>eng</language><subject>Asymmetry ; Band structure of solids ; Electronic structure ; Energy bands ; Folding ; Graphene ; Nanostructure ; Phases</subject><ispartof>RSC advances, 2013-01, Vol.3 (25), p.10014-10018</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</citedby><cites>FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Le, Nam B.</creatorcontrib><creatorcontrib>Woods, Lilia M.</creatorcontrib><title>Zigzag graphene nanoribbons with curved edges</title><title>RSC advances</title><description>Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.</description><subject>Asymmetry</subject><subject>Band structure of solids</subject><subject>Electronic structure</subject><subject>Energy bands</subject><subject>Folding</subject><subject>Graphene</subject><subject>Nanostructure</subject><subject>Phases</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkD9LxEAUxBdR8Div8ROkFCH69m-SUg71hAMbbWyWt5uXXCSXxN1E0U9v5ASdZqb4zRTD2DmHKw6yuPYyoOJ5BvURWwhQJhVgiuN_-ZStYnyFWUZzYfiCpS9N_YV1UgccdtRR0mHXh8a5vovJRzPuEj-FdyoTKmuKZ-ykwjbS6teX7Pnu9mm9SbeP9w_rm23qhVFj6jMiclBI6QskrCSXupSeNGYV5EAlKucy5_NcCsxKLHSuOa-4cdrNVS2X7OKwO4T-baI42n0TPbUtdtRP0XIjABSoTM7o5QH1oY8xUGWH0OwxfFoO9ucW-3eL_AZRI1VO</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Le, Nam B.</creator><creator>Woods, Lilia M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Zigzag graphene nanoribbons with curved edges</title><author>Le, Nam B. ; Woods, Lilia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c7eeeb0933c9aeaf3135d3ce5a7f080eda4bb7bc8832a7da958511f16b5b7ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymmetry</topic><topic>Band structure of solids</topic><topic>Electronic structure</topic><topic>Energy bands</topic><topic>Folding</topic><topic>Graphene</topic><topic>Nanostructure</topic><topic>Phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Nam B.</creatorcontrib><creatorcontrib>Woods, Lilia M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Nam B.</au><au>Woods, Lilia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zigzag graphene nanoribbons with curved edges</atitle><jtitle>RSC advances</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>3</volume><issue>25</issue><spage>10014</spage><epage>10018</epage><pages>10014-10018</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Zigzag-edged single and double folded graphene nanoribbons are studied using density functional theory methods. Some asymmetric folds and folds with an octagon/hexagonal extended defect line are also considered. The long-range van der Waals interactions are taken into account viasemiempirical pairwise optimized potential. The geometrical and magnetic phases of the studied structures are obtained. It is shown that the magnetic states of the folds depend strongly on their stacking patterns. The electronic structures in terms of energy needed for the folding process, van der Waals contribution, energy band gaps, band structures, and densities of states are also calculated. We find that significant changes in the electronic structure can be achieved as a result of folding and adding line defects.</abstract><doi>10.1039/c3ra41870g</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2013-01, Vol.3 (25), p.10014-10018 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1620040473 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Asymmetry Band structure of solids Electronic structure Energy bands Folding Graphene Nanostructure Phases |
title | Zigzag graphene nanoribbons with curved edges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zigzag%20graphene%20nanoribbons%20with%20curved%20edges&rft.jtitle=RSC%20advances&rft.au=Le,%20Nam%20B.&rft.date=2013-01-01&rft.volume=3&rft.issue=25&rft.spage=10014&rft.epage=10018&rft.pages=10014-10018&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c3ra41870g&rft_dat=%3Cproquest_cross%3E1620040473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620040473&rft_id=info:pmid/&rfr_iscdi=true |